Skip to content

sfx_find_peaks

Classes for peak finding tasks in SFX.

Classes:

Name Description
CxiWriter

utility class for writing peak finding results to CXI files.

FindPeaksPyAlgos

peak finding using psana's PyAlgos algorithm. Optional data compression and decompression with libpressio for data reduction tests.

CxiWriter

Source code in lute/tasks/sfx_find_peaks.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
class CxiWriter:

    def __init__(
        self,
        outdir: str,
        rank: int,
        exp: str,
        run: int,
        n_events: int,
        det_shape: Tuple[int, ...],
        raw_det_shape: Tuple[int, ...],
        min_peaks: int,
        max_peaks: int,
        i_x: Any,  # Not typed becomes it comes from psana
        i_y: Any,  # Not typed becomes it comes from psana
        ipx: Any,  # Not typed becomes it comes from psana
        ipy: Any,  # Not typed becomes it comes from psana
        tag: str,
    ):
        """
        Set up the CXI files to which peak finding results will be saved.

        Parameters:

            outdir (str): Output directory for cxi file.

            rank (int): MPI rank of the caller.

            exp (str): Experiment string.

            run (int): Experimental run.

            n_events (int): Number of events to process.

            det_shape (Tuple[int, int]): Shape of the numpy array storing the detector
                data. This must be aCheetah-stile 2D array.

            raw_det_shape (Tuple[int, ...]): Shape of the numpy array storing the
                detector in raw unassembled form. Length = 2, 3, or 4.

            min_peaks (int): Minimum number of peaks per image.

            max_peaks (int): Maximum number of peaks per image.

            i_x (Any): Array of pixel indexes along x

            i_y (Any): Array of pixel indexes along y

            ipx (Any): Pixel indexes with respect to detector origin (x component)

            ipy (Any): Pixel indexes with respect to detector origin (y component)

            tag (str): Tag to append to cxi file names.
        """
        self._det_shape: Tuple[int, ...] = det_shape
        self._raw_det_shape: Tuple[int, ...] = raw_det_shape
        self._i_x: Any = i_x
        self._i_y: Any = i_y
        self._ipx: Any = ipx
        self._ipy: Any = ipy
        self._index: int = 0

        # Create and open the HDF5 file
        fname: str = f"{exp}_r{run:0>4}_{rank}{tag}.cxi"
        Path(outdir).mkdir(exist_ok=True)
        self._outh5: Any = h5py.File(Path(outdir) / fname, "w")

        # Entry_1 entry for processing with CrystFEL
        entry_1: Any = self._outh5.create_group("entry_1")
        keys: List[str] = [
            "nPeaks",
            "peakXPosRaw",
            "peakYPosRaw",
            "rcent",
            "ccent",
            "rmin",
            "rmax",
            "cmin",
            "cmax",
            "peakTotalIntensity",
            "peakMaxIntensity",
            "peakRadius",
        ]
        ds_expId: Any = entry_1.create_dataset(
            "experimental_identifier", (n_events,), maxshape=(None,), dtype=int
        )
        ds_expId.attrs["axes"] = "experiment_identifier"
        data_1: Any = entry_1.create_dataset(
            "/entry_1/data_1/data",
            (n_events, det_shape[0], det_shape[1]),
            chunks=(1, det_shape[0], det_shape[1]),
            maxshape=(None, det_shape[0], det_shape[1]),
            dtype=numpy.float32,
        )
        data_1.attrs["axes"] = "experiment_identifier"
        key: str
        for key in ["powderHits", "powderMisses", "mask"]:
            entry_1.create_dataset(
                f"/entry_1/data_1/{key}",
                (det_shape[0], det_shape[1]),
                chunks=(det_shape[0], det_shape[1]),
                maxshape=(det_shape[0], det_shape[1]),
                dtype=float,
            )

        # Peak-related entries
        for key in keys:
            if key == "nPeaks":
                ds_x: Any = self._outh5.create_dataset(
                    f"/entry_1/result_1/{key}",
                    (n_events,),
                    maxshape=(None,),
                    dtype=int,
                )
                ds_x.attrs["minPeaks"] = min_peaks
                ds_x.attrs["maxPeaks"] = max_peaks
            else:
                ds_x: Any = self._outh5.create_dataset(
                    f"/entry_1/result_1/{key}",
                    (n_events, max_peaks),
                    maxshape=(None, max_peaks),
                    chunks=(1, max_peaks),
                    dtype=float,
                )
            ds_x.attrs["axes"] = "experiment_identifier:peaks"

        # Timestamp entries
        lcls_1: Any = self._outh5.create_group("LCLS")
        keys: List[str] = [
            "eventNumber",
            "machineTime",
            "machineTimeNanoSeconds",
            "fiducial",
            "photon_energy_eV",
        ]
        key: str
        for key in keys:
            if key == "photon_energy_eV":
                ds_x: Any = lcls_1.create_dataset(
                    f"{key}", (n_events,), maxshape=(None,), dtype=float
                )
            else:
                ds_x = lcls_1.create_dataset(
                    f"{key}", (n_events,), maxshape=(None,), dtype=int
                )
            ds_x.attrs["axes"] = "experiment_identifier"

        ds_x = self._outh5.create_dataset(
            "/LCLS/detector_1/EncoderValue", (n_events,), maxshape=(None,), dtype=float
        )
        ds_x.attrs["axes"] = "experiment_identifier"

    def write_event(
        self,
        img: NDArray[numpy.float_],
        peaks: Any,  # Not typed becomes it comes from psana
        timestamp_seconds: int,
        timestamp_nanoseconds: int,
        timestamp_fiducials: int,
        photon_energy: float,
        clen: float,
    ):
        """
        Write peak finding results for an event into the HDF5 file.

        Parameters:

            img (NDArray[numpy.float_]): Detector data for the event

            peaks: (Any): Peak information for the event, as recovered from the PyAlgos
                algorithm

            timestamp_seconds (int): Second part of the event's timestamp information

            timestamp_nanoseconds (int): Nanosecond part of the event's timestamp
                information

            timestamp_fiducials (int): Fiducials part of the event's timestamp
                information

            photon_energy (float): Photon energy for the event

            clen (float): Camera length/detector distance.
        """
        ch_rows: NDArray[numpy.float_] = (
            peaks[:, 0] * self._raw_det_shape[-2] + peaks[:, 1]
        )
        ch_cols: NDArray[numpy.float_] = peaks[:, 2]

        if self._outh5["/entry_1/data_1/data"].shape[0] <= self._index:
            self._outh5["entry_1/data_1/data"].resize(self._index + 1, axis=0)
            ds_key: str
            for ds_key in self._outh5["/entry_1/result_1"].keys():
                self._outh5[f"/entry_1/result_1/{ds_key}"].resize(
                    self._index + 1, axis=0
                )
            for ds_key in (
                "machineTime",
                "machineTimeNanoSeconds",
                "fiducial",
                "photon_energy_eV",
                "detector_1/EncoderValue",
            ):
                self._outh5[f"/LCLS/{ds_key}"].resize(self._index + 1, axis=0)

        # Entry_1 entry for processing with CrystFEL
        self._outh5["/entry_1/data_1/data"][self._index, :, :] = img.reshape(
            -1, img.shape[-1]
        )
        self._outh5["/entry_1/result_1/nPeaks"][self._index] = peaks.shape[0]
        self._outh5["/entry_1/result_1/peakXPosRaw"][self._index, : peaks.shape[0]] = (
            ch_cols.astype("int")
        )
        self._outh5["/entry_1/result_1/peakYPosRaw"][self._index, : peaks.shape[0]] = (
            ch_rows.astype("int")
        )
        self._outh5["/entry_1/result_1/rcent"][self._index, : peaks.shape[0]] = peaks[
            :, 6
        ]
        self._outh5["/entry_1/result_1/ccent"][self._index, : peaks.shape[0]] = peaks[
            :, 7
        ]
        self._outh5["/entry_1/result_1/rmin"][self._index, : peaks.shape[0]] = peaks[
            :, 10
        ]
        self._outh5["/entry_1/result_1/rmax"][self._index, : peaks.shape[0]] = peaks[
            :, 11
        ]
        self._outh5["/entry_1/result_1/cmin"][self._index, : peaks.shape[0]] = peaks[
            :, 12
        ]
        self._outh5["/entry_1/result_1/cmax"][self._index, : peaks.shape[0]] = peaks[
            :, 13
        ]
        self._outh5["/entry_1/result_1/peakTotalIntensity"][
            self._index, : peaks.shape[0]
        ] = peaks[:, 5]
        self._outh5["/entry_1/result_1/peakMaxIntensity"][
            self._index, : peaks.shape[0]
        ] = peaks[:, 4]

        # Calculate and write pixel radius
        peaks_cenx: NDArray[numpy.float_] = (
            self._i_x[
                numpy.array(peaks[:, 0], dtype=numpy.int64),
                numpy.array(peaks[:, 1], dtype=numpy.int64),
                numpy.array(peaks[:, 2], dtype=numpy.int64),
            ]
            + 0.5
            - self._ipx
        )
        peaks_ceny: NDArray[numpy.float_] = (
            self._i_y[
                numpy.array(peaks[:, 0], dtype=numpy.int64),
                numpy.array(peaks[:, 1], dtype=numpy.int64),
                numpy.array(peaks[:, 2], dtype=numpy.int64),
            ]
            + 0.5
            - self._ipy
        )
        peak_radius: NDArray[numpy.float_] = numpy.sqrt(
            (peaks_cenx**2) + (peaks_ceny**2)
        )
        self._outh5["/entry_1/result_1/peakRadius"][
            self._index, : peaks.shape[0]
        ] = peak_radius

        # LCLS entry dataset
        self._outh5["/LCLS/machineTime"][self._index] = timestamp_seconds
        self._outh5["/LCLS/machineTimeNanoSeconds"][self._index] = timestamp_nanoseconds
        self._outh5["/LCLS/fiducial"][self._index] = timestamp_fiducials
        self._outh5["/LCLS/photon_energy_eV"][self._index] = photon_energy

        # Add clen distance
        self._outh5["/LCLS/detector_1/EncoderValue"][self._index] = clen
        self._index += 1

    def write_non_event_data(
        self,
        powder_hits: NDArray[numpy.float_],
        powder_misses: NDArray[numpy.float_],
        mask: NDArray[numpy.uint16],
    ):
        """
        Write to the file data that is not related to a specific event (masks, powders)

        Parameters:

            powder_hits (NDArray[numpy.float_]): Virtual powder pattern from hits

            powder_misses (NDArray[numpy.float_]): Virtual powder pattern from hits

            mask: (NDArray[numpy.uint16]): Pixel ask to write into the file

        """
        # Add powders and mask to files, reshaping them to match the crystfel
        # convention
        self._outh5["/entry_1/data_1/powderHits"][:] = powder_hits.reshape(
            -1, powder_hits.shape[-1]
        )
        self._outh5["/entry_1/data_1/powderMisses"][:] = powder_misses.reshape(
            -1, powder_misses.shape[-1]
        )
        self._outh5["/entry_1/data_1/mask"][:] = (1 - mask).reshape(
            -1, mask.shape[-1]
        )  # Crystfel expects inverted values

    def optimize_and_close_file(
        self,
        num_hits: int,
        max_peaks: int,
    ):
        """
        Resize data blocks and write additional information to the file

        Parameters:

            num_hits (int): Number of hits for which information has been saved to the
                file

            max_peaks (int): Maximum number of peaks (per event) for which information
                can be written into the file
        """

        # Resize the entry_1 entry
        data_shape: Tuple[int, ...] = self._outh5["/entry_1/data_1/data"].shape
        self._outh5["/entry_1/data_1/data"].resize(
            (num_hits, data_shape[1], data_shape[2])
        )
        self._outh5[f"/entry_1/result_1/nPeaks"].resize((num_hits,))
        key: str
        for key in [
            "peakXPosRaw",
            "peakYPosRaw",
            "rcent",
            "ccent",
            "rmin",
            "rmax",
            "cmin",
            "cmax",
            "peakTotalIntensity",
            "peakMaxIntensity",
            "peakRadius",
        ]:
            self._outh5[f"/entry_1/result_1/{key}"].resize((num_hits, max_peaks))

        # Resize LCLS entry
        for key in [
            "eventNumber",
            "machineTime",
            "machineTimeNanoSeconds",
            "fiducial",
            "detector_1/EncoderValue",
            "photon_energy_eV",
        ]:
            self._outh5[f"/LCLS/{key}"].resize((num_hits,))
        self._outh5.close()

__init__(outdir, rank, exp, run, n_events, det_shape, raw_det_shape, min_peaks, max_peaks, i_x, i_y, ipx, ipy, tag)

Set up the CXI files to which peak finding results will be saved.

Parameters:

outdir (str): Output directory for cxi file.

rank (int): MPI rank of the caller.

exp (str): Experiment string.

run (int): Experimental run.

n_events (int): Number of events to process.

det_shape (Tuple[int, int]): Shape of the numpy array storing the detector
    data. This must be aCheetah-stile 2D array.

raw_det_shape (Tuple[int, ...]): Shape of the numpy array storing the
    detector in raw unassembled form. Length = 2, 3, or 4.

min_peaks (int): Minimum number of peaks per image.

max_peaks (int): Maximum number of peaks per image.

i_x (Any): Array of pixel indexes along x

i_y (Any): Array of pixel indexes along y

ipx (Any): Pixel indexes with respect to detector origin (x component)

ipy (Any): Pixel indexes with respect to detector origin (y component)

tag (str): Tag to append to cxi file names.
Source code in lute/tasks/sfx_find_peaks.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def __init__(
    self,
    outdir: str,
    rank: int,
    exp: str,
    run: int,
    n_events: int,
    det_shape: Tuple[int, ...],
    raw_det_shape: Tuple[int, ...],
    min_peaks: int,
    max_peaks: int,
    i_x: Any,  # Not typed becomes it comes from psana
    i_y: Any,  # Not typed becomes it comes from psana
    ipx: Any,  # Not typed becomes it comes from psana
    ipy: Any,  # Not typed becomes it comes from psana
    tag: str,
):
    """
    Set up the CXI files to which peak finding results will be saved.

    Parameters:

        outdir (str): Output directory for cxi file.

        rank (int): MPI rank of the caller.

        exp (str): Experiment string.

        run (int): Experimental run.

        n_events (int): Number of events to process.

        det_shape (Tuple[int, int]): Shape of the numpy array storing the detector
            data. This must be aCheetah-stile 2D array.

        raw_det_shape (Tuple[int, ...]): Shape of the numpy array storing the
            detector in raw unassembled form. Length = 2, 3, or 4.

        min_peaks (int): Minimum number of peaks per image.

        max_peaks (int): Maximum number of peaks per image.

        i_x (Any): Array of pixel indexes along x

        i_y (Any): Array of pixel indexes along y

        ipx (Any): Pixel indexes with respect to detector origin (x component)

        ipy (Any): Pixel indexes with respect to detector origin (y component)

        tag (str): Tag to append to cxi file names.
    """
    self._det_shape: Tuple[int, ...] = det_shape
    self._raw_det_shape: Tuple[int, ...] = raw_det_shape
    self._i_x: Any = i_x
    self._i_y: Any = i_y
    self._ipx: Any = ipx
    self._ipy: Any = ipy
    self._index: int = 0

    # Create and open the HDF5 file
    fname: str = f"{exp}_r{run:0>4}_{rank}{tag}.cxi"
    Path(outdir).mkdir(exist_ok=True)
    self._outh5: Any = h5py.File(Path(outdir) / fname, "w")

    # Entry_1 entry for processing with CrystFEL
    entry_1: Any = self._outh5.create_group("entry_1")
    keys: List[str] = [
        "nPeaks",
        "peakXPosRaw",
        "peakYPosRaw",
        "rcent",
        "ccent",
        "rmin",
        "rmax",
        "cmin",
        "cmax",
        "peakTotalIntensity",
        "peakMaxIntensity",
        "peakRadius",
    ]
    ds_expId: Any = entry_1.create_dataset(
        "experimental_identifier", (n_events,), maxshape=(None,), dtype=int
    )
    ds_expId.attrs["axes"] = "experiment_identifier"
    data_1: Any = entry_1.create_dataset(
        "/entry_1/data_1/data",
        (n_events, det_shape[0], det_shape[1]),
        chunks=(1, det_shape[0], det_shape[1]),
        maxshape=(None, det_shape[0], det_shape[1]),
        dtype=numpy.float32,
    )
    data_1.attrs["axes"] = "experiment_identifier"
    key: str
    for key in ["powderHits", "powderMisses", "mask"]:
        entry_1.create_dataset(
            f"/entry_1/data_1/{key}",
            (det_shape[0], det_shape[1]),
            chunks=(det_shape[0], det_shape[1]),
            maxshape=(det_shape[0], det_shape[1]),
            dtype=float,
        )

    # Peak-related entries
    for key in keys:
        if key == "nPeaks":
            ds_x: Any = self._outh5.create_dataset(
                f"/entry_1/result_1/{key}",
                (n_events,),
                maxshape=(None,),
                dtype=int,
            )
            ds_x.attrs["minPeaks"] = min_peaks
            ds_x.attrs["maxPeaks"] = max_peaks
        else:
            ds_x: Any = self._outh5.create_dataset(
                f"/entry_1/result_1/{key}",
                (n_events, max_peaks),
                maxshape=(None, max_peaks),
                chunks=(1, max_peaks),
                dtype=float,
            )
        ds_x.attrs["axes"] = "experiment_identifier:peaks"

    # Timestamp entries
    lcls_1: Any = self._outh5.create_group("LCLS")
    keys: List[str] = [
        "eventNumber",
        "machineTime",
        "machineTimeNanoSeconds",
        "fiducial",
        "photon_energy_eV",
    ]
    key: str
    for key in keys:
        if key == "photon_energy_eV":
            ds_x: Any = lcls_1.create_dataset(
                f"{key}", (n_events,), maxshape=(None,), dtype=float
            )
        else:
            ds_x = lcls_1.create_dataset(
                f"{key}", (n_events,), maxshape=(None,), dtype=int
            )
        ds_x.attrs["axes"] = "experiment_identifier"

    ds_x = self._outh5.create_dataset(
        "/LCLS/detector_1/EncoderValue", (n_events,), maxshape=(None,), dtype=float
    )
    ds_x.attrs["axes"] = "experiment_identifier"

optimize_and_close_file(num_hits, max_peaks)

Resize data blocks and write additional information to the file

Parameters:

num_hits (int): Number of hits for which information has been saved to the
    file

max_peaks (int): Maximum number of peaks (per event) for which information
    can be written into the file
Source code in lute/tasks/sfx_find_peaks.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def optimize_and_close_file(
    self,
    num_hits: int,
    max_peaks: int,
):
    """
    Resize data blocks and write additional information to the file

    Parameters:

        num_hits (int): Number of hits for which information has been saved to the
            file

        max_peaks (int): Maximum number of peaks (per event) for which information
            can be written into the file
    """

    # Resize the entry_1 entry
    data_shape: Tuple[int, ...] = self._outh5["/entry_1/data_1/data"].shape
    self._outh5["/entry_1/data_1/data"].resize(
        (num_hits, data_shape[1], data_shape[2])
    )
    self._outh5[f"/entry_1/result_1/nPeaks"].resize((num_hits,))
    key: str
    for key in [
        "peakXPosRaw",
        "peakYPosRaw",
        "rcent",
        "ccent",
        "rmin",
        "rmax",
        "cmin",
        "cmax",
        "peakTotalIntensity",
        "peakMaxIntensity",
        "peakRadius",
    ]:
        self._outh5[f"/entry_1/result_1/{key}"].resize((num_hits, max_peaks))

    # Resize LCLS entry
    for key in [
        "eventNumber",
        "machineTime",
        "machineTimeNanoSeconds",
        "fiducial",
        "detector_1/EncoderValue",
        "photon_energy_eV",
    ]:
        self._outh5[f"/LCLS/{key}"].resize((num_hits,))
    self._outh5.close()

write_event(img, peaks, timestamp_seconds, timestamp_nanoseconds, timestamp_fiducials, photon_energy, clen)

Write peak finding results for an event into the HDF5 file.

Parameters:

img (NDArray[numpy.float_]): Detector data for the event

peaks: (Any): Peak information for the event, as recovered from the PyAlgos
    algorithm

timestamp_seconds (int): Second part of the event's timestamp information

timestamp_nanoseconds (int): Nanosecond part of the event's timestamp
    information

timestamp_fiducials (int): Fiducials part of the event's timestamp
    information

photon_energy (float): Photon energy for the event

clen (float): Camera length/detector distance.
Source code in lute/tasks/sfx_find_peaks.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def write_event(
    self,
    img: NDArray[numpy.float_],
    peaks: Any,  # Not typed becomes it comes from psana
    timestamp_seconds: int,
    timestamp_nanoseconds: int,
    timestamp_fiducials: int,
    photon_energy: float,
    clen: float,
):
    """
    Write peak finding results for an event into the HDF5 file.

    Parameters:

        img (NDArray[numpy.float_]): Detector data for the event

        peaks: (Any): Peak information for the event, as recovered from the PyAlgos
            algorithm

        timestamp_seconds (int): Second part of the event's timestamp information

        timestamp_nanoseconds (int): Nanosecond part of the event's timestamp
            information

        timestamp_fiducials (int): Fiducials part of the event's timestamp
            information

        photon_energy (float): Photon energy for the event

        clen (float): Camera length/detector distance.
    """
    ch_rows: NDArray[numpy.float_] = (
        peaks[:, 0] * self._raw_det_shape[-2] + peaks[:, 1]
    )
    ch_cols: NDArray[numpy.float_] = peaks[:, 2]

    if self._outh5["/entry_1/data_1/data"].shape[0] <= self._index:
        self._outh5["entry_1/data_1/data"].resize(self._index + 1, axis=0)
        ds_key: str
        for ds_key in self._outh5["/entry_1/result_1"].keys():
            self._outh5[f"/entry_1/result_1/{ds_key}"].resize(
                self._index + 1, axis=0
            )
        for ds_key in (
            "machineTime",
            "machineTimeNanoSeconds",
            "fiducial",
            "photon_energy_eV",
            "detector_1/EncoderValue",
        ):
            self._outh5[f"/LCLS/{ds_key}"].resize(self._index + 1, axis=0)

    # Entry_1 entry for processing with CrystFEL
    self._outh5["/entry_1/data_1/data"][self._index, :, :] = img.reshape(
        -1, img.shape[-1]
    )
    self._outh5["/entry_1/result_1/nPeaks"][self._index] = peaks.shape[0]
    self._outh5["/entry_1/result_1/peakXPosRaw"][self._index, : peaks.shape[0]] = (
        ch_cols.astype("int")
    )
    self._outh5["/entry_1/result_1/peakYPosRaw"][self._index, : peaks.shape[0]] = (
        ch_rows.astype("int")
    )
    self._outh5["/entry_1/result_1/rcent"][self._index, : peaks.shape[0]] = peaks[
        :, 6
    ]
    self._outh5["/entry_1/result_1/ccent"][self._index, : peaks.shape[0]] = peaks[
        :, 7
    ]
    self._outh5["/entry_1/result_1/rmin"][self._index, : peaks.shape[0]] = peaks[
        :, 10
    ]
    self._outh5["/entry_1/result_1/rmax"][self._index, : peaks.shape[0]] = peaks[
        :, 11
    ]
    self._outh5["/entry_1/result_1/cmin"][self._index, : peaks.shape[0]] = peaks[
        :, 12
    ]
    self._outh5["/entry_1/result_1/cmax"][self._index, : peaks.shape[0]] = peaks[
        :, 13
    ]
    self._outh5["/entry_1/result_1/peakTotalIntensity"][
        self._index, : peaks.shape[0]
    ] = peaks[:, 5]
    self._outh5["/entry_1/result_1/peakMaxIntensity"][
        self._index, : peaks.shape[0]
    ] = peaks[:, 4]

    # Calculate and write pixel radius
    peaks_cenx: NDArray[numpy.float_] = (
        self._i_x[
            numpy.array(peaks[:, 0], dtype=numpy.int64),
            numpy.array(peaks[:, 1], dtype=numpy.int64),
            numpy.array(peaks[:, 2], dtype=numpy.int64),
        ]
        + 0.5
        - self._ipx
    )
    peaks_ceny: NDArray[numpy.float_] = (
        self._i_y[
            numpy.array(peaks[:, 0], dtype=numpy.int64),
            numpy.array(peaks[:, 1], dtype=numpy.int64),
            numpy.array(peaks[:, 2], dtype=numpy.int64),
        ]
        + 0.5
        - self._ipy
    )
    peak_radius: NDArray[numpy.float_] = numpy.sqrt(
        (peaks_cenx**2) + (peaks_ceny**2)
    )
    self._outh5["/entry_1/result_1/peakRadius"][
        self._index, : peaks.shape[0]
    ] = peak_radius

    # LCLS entry dataset
    self._outh5["/LCLS/machineTime"][self._index] = timestamp_seconds
    self._outh5["/LCLS/machineTimeNanoSeconds"][self._index] = timestamp_nanoseconds
    self._outh5["/LCLS/fiducial"][self._index] = timestamp_fiducials
    self._outh5["/LCLS/photon_energy_eV"][self._index] = photon_energy

    # Add clen distance
    self._outh5["/LCLS/detector_1/EncoderValue"][self._index] = clen
    self._index += 1

write_non_event_data(powder_hits, powder_misses, mask)

Write to the file data that is not related to a specific event (masks, powders)

Parameters:

powder_hits (NDArray[numpy.float_]): Virtual powder pattern from hits

powder_misses (NDArray[numpy.float_]): Virtual powder pattern from hits

mask: (NDArray[numpy.uint16]): Pixel ask to write into the file
Source code in lute/tasks/sfx_find_peaks.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def write_non_event_data(
    self,
    powder_hits: NDArray[numpy.float_],
    powder_misses: NDArray[numpy.float_],
    mask: NDArray[numpy.uint16],
):
    """
    Write to the file data that is not related to a specific event (masks, powders)

    Parameters:

        powder_hits (NDArray[numpy.float_]): Virtual powder pattern from hits

        powder_misses (NDArray[numpy.float_]): Virtual powder pattern from hits

        mask: (NDArray[numpy.uint16]): Pixel ask to write into the file

    """
    # Add powders and mask to files, reshaping them to match the crystfel
    # convention
    self._outh5["/entry_1/data_1/powderHits"][:] = powder_hits.reshape(
        -1, powder_hits.shape[-1]
    )
    self._outh5["/entry_1/data_1/powderMisses"][:] = powder_misses.reshape(
        -1, powder_misses.shape[-1]
    )
    self._outh5["/entry_1/data_1/mask"][:] = (1 - mask).reshape(
        -1, mask.shape[-1]
    )  # Crystfel expects inverted values

FindPeaksPyAlgos

Bases: Task

Task that performs peak finding using the PyAlgos peak finding algorithms and writes the peak information to CXI files.

Source code in lute/tasks/sfx_find_peaks.py
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
class FindPeaksPyAlgos(Task):
    """
    Task that performs peak finding using the PyAlgos peak finding algorithms and
    writes the peak information to CXI files.
    """

    def __init__(self, *, params: TaskParameters, use_mpi: bool = True) -> None:
        super().__init__(params=params, use_mpi=use_mpi)
        if self._task_parameters.compression is not None:
            from libpressio import PressioCompressor

    def _run(self) -> None:
        ds: Any = MPIDataSource(
            f"exp={self._task_parameters.lute_config.experiment}:"
            f"run={self._task_parameters.lute_config.run}:smd"
        )
        if self._task_parameters.n_events != 0:
            ds.break_after(self._task_parameters.n_events)

        det: Any = Detector(self._task_parameters.det_name)
        det.do_reshape_2d_to_3d(flag=True)

        evr: Any = Detector(self._task_parameters.event_receiver)

        i_x: Any = det.indexes_x(self._task_parameters.lute_config.run).astype(
            numpy.int64
        )
        i_y: Any = det.indexes_y(self._task_parameters.lute_config.run).astype(
            numpy.int64
        )
        ipx: Any
        ipy: Any
        ipx, ipy = det.point_indexes(
            self._task_parameters.lute_config.run, pxy_um=(0, 0)
        )

        alg: Any = None
        num_hits: int = 0
        num_events: int = 0
        num_empty_images: int = 0
        tag: str = self._task_parameters.tag
        if (tag != "") and (tag[0] != "_"):
            tag = "_" + tag

        evt: Any
        for evt in ds.events():

            evt_id: Any = evt.get(EventId)
            timestamp_seconds: int = evt_id.time()[0]
            timestamp_nanoseconds: int = evt_id.time()[1]
            timestamp_fiducials: int = evt_id.fiducials()
            event_codes: Any = evr.eventCodes(evt)

            if isinstance(self._task_parameters.pv_camera_length, float):
                clen: float = self._task_parameters.pv_camera_length
            else:
                clen = (
                    ds.env().epicsStore().value(self._task_parameters.pv_camera_length)
                )

            if self._task_parameters.event_logic:
                if not self._task_parameters.event_code in event_codes:
                    continue

            img: Any = det.calib(evt)

            if img is None:
                num_empty_images += 1
                continue

            if alg is None:
                det_shape: Tuple[int, ...] = img.shape
                if len(det_shape) == 3:
                    det_shape = (det_shape[0] * det_shape[1], det_shape[2])
                else:
                    det_shape = img.shape

                mask: NDArray[numpy.uint16] = numpy.ones(det_shape).astype(numpy.uint16)

                if self._task_parameters.psana_mask:
                    mask = det.mask(
                        self.task_parameters.run,
                        calib=False,
                        status=True,
                        edges=False,
                        centra=False,
                        unbond=False,
                        unbondnbrs=False,
                    ).astype(numpy.uint16)

                hdffh: Any
                if self._task_parameters.mask_file is not None:
                    with h5py.File(self._task_parameters.mask_file, "r") as hdffh:
                        loaded_mask: NDArray[numpy.int] = hdffh["entry_1/data_1/mask"][
                            :
                        ]
                        mask *= loaded_mask.astype(numpy.uint16)

                file_writer: CxiWriter = CxiWriter(
                    outdir=self._task_parameters.outdir,
                    rank=ds.rank,
                    exp=self._task_parameters.lute_config.experiment,
                    run=self._task_parameters.lute_config.run,
                    n_events=self._task_parameters.n_events,
                    det_shape=det_shape,
                    raw_det_shape=img.shape,
                    i_x=i_x,
                    i_y=i_y,
                    ipx=ipx,
                    ipy=ipy,
                    min_peaks=self._task_parameters.min_peaks,
                    max_peaks=self._task_parameters.max_peaks,
                    tag=tag,
                )
                alg: Any = PyAlgos(mask=mask, pbits=0)  # pbits controls verbosity
                alg.set_peak_selection_pars(
                    npix_min=self._task_parameters.npix_min,
                    npix_max=self._task_parameters.npix_max,
                    amax_thr=self._task_parameters.amax_thr,
                    atot_thr=self._task_parameters.atot_thr,
                    son_min=self._task_parameters.son_min,
                )

                if self._task_parameters.compression is not None:

                    libpressio_config = generate_libpressio_configuration(
                        compressor=self._task_parameters.compression.compressor,
                        roi_window_size=self._task_parameters.compression.roi_window_size,
                        bin_size=self._task_parameters.compression.bin_size,
                        abs_error=self._task_parameters.compression.abs_error,
                        libpressio_mask=mask,
                    )

                powder_hits: NDArray[numpy.float_] = numpy.zeros(det_shape)
                powder_misses: NDArray[numpy.float_] = numpy.zeros(det_shape)

            peaks: Any = alg.peak_finder_v3r3(
                img,
                rank=self._task_parameters.peak_rank,
                r0=self._task_parameters.r0,
                dr=self._task_parameters.dr,
                nsigm=self._task_parameters.nsigm,
            )

            num_events += 1

            if (peaks.shape[0] >= self._task_parameters.min_peaks) and (
                peaks.shape[0] <= self._task_parameters.max_peaks
            ):

                if self._task_parameters.compression is not None:

                    libpressio_config_with_peaks = (
                        add_peaks_to_libpressio_configuration(libpressio_config, peaks)
                    )
                    compressor = PressioCompressor.from_config(
                        libpressio_config_with_peaks
                    )
                    compressed_img = compressor.encode(img)
                    decompressed_img = numpy.zeros_like(img)
                    decompressed = compressor.decode(compressed_img, decompressed_img)
                    img = decompressed_img

                photon_energy: float
                try:
                    photon_energy = Detector("EBeam").get(evt).ebeamPhotonEnergy()
                    if numpy.isinf(photon_energy):
                        raise ValueError
                except (AttributeError, ValueError):
                    photon_energy = (
                        1.23984197386209e-06
                        / ds.env().epicsStore().value("SIOC:SYS0:ML00:AO192")
                    ) * 1e9

                file_writer.write_event(
                    img=img,
                    peaks=peaks,
                    timestamp_seconds=timestamp_seconds,
                    timestamp_nanoseconds=timestamp_nanoseconds,
                    timestamp_fiducials=timestamp_fiducials,
                    photon_energy=photon_energy,
                    clen=clen,
                )
                num_hits += 1

            # TODO: Fix bug here
            # generate / update powders
            if peaks.shape[0] >= self._task_parameters.min_peaks:
                powder_hits = numpy.maximum(
                    powder_hits,
                    img.reshape(-1, img.shape[-1]),
                )
            else:
                powder_misses = numpy.maximum(
                    powder_misses,
                    img.reshape(-1, img.shape[-1]),
                )

        if num_empty_images != 0:
            msg: Message = Message(
                contents=f"Rank {ds.rank} encountered {num_empty_images} empty images."
            )
            self._report_to_executor(msg)

        file_writer.write_non_event_data(
            powder_hits=powder_hits,
            powder_misses=powder_misses,
            mask=mask,
        )

        file_writer.optimize_and_close_file(
            num_hits=num_hits, max_peaks=self._task_parameters.max_peaks
        )

        COMM_WORLD.Barrier()

        num_hits_per_rank: List[int] = COMM_WORLD.gather(num_hits, root=0)
        num_hits_total: int = COMM_WORLD.reduce(num_hits, SUM)
        num_events_total: int = COMM_WORLD.reduce(num_events, SUM)

        if ds.rank == 0:
            master_fname: Path = write_master_file(
                mpi_size=ds.size,
                outdir=self._task_parameters.outdir,
                exp=self._task_parameters.lute_config.experiment,
                run=self._task_parameters.lute_config.run,
                tag=tag,
                n_hits_per_rank=num_hits_per_rank,
                n_hits_total=num_hits_total,
            )

            # Write final summary file
            f: TextIO
            with open(
                Path(self._task_parameters.outdir) / f"peakfinding{tag}.summary", "w"
            ) as f:
                print(f"Number of events processed: {num_events_total}", file=f)
                print(f"Number of hits found: {num_hits_total}", file=f)
                print(
                    "Fractional hit rate: " f"{(num_hits_total/num_events_total):.2f}",
                    file=f,
                )
                print(f"No. hits per rank: {num_hits_per_rank}", file=f)

            with h5py.File(master_fname, "r") as f:
                final_powder_hits: numpy.ndarray[numpy.float64] = f[
                    "entry_1/data_1/powderHits"
                ][:]
                final_powder_misses: numpy.ndarray[numpy.float64] = f[
                    "entry_1/data_1/powderMisses"
                ][:]
                f.close()

            powder_plots: pn.Tabs = self._create_powder_plots(
                det, final_powder_hits, final_powder_misses
            )
            text_summary: Dict[str, str] = {
                "Number of events processed": str(num_events_total),
                "Number of hits found": str(num_hits_total),
                "Fractional hit rate": f"{num_hits_total/num_events_total:.2f}",
            }
            self._result.summary = (
                text_summary,
                ElogSummaryPlots(
                    f"r{self._task_parameters.lute_config.run}/powders", powder_plots
                ),
            )
            with open(Path(self._task_parameters.out_file), "w") as f:
                print(f"{master_fname}", file=f)

            # Write out_file

    def _post_run(self) -> None:
        super()._post_run()
        self._result.task_status = TaskStatus.COMPLETED

    def _assemble_image(
        self, det: Detector, img: numpy.ndarray[numpy.float64]
    ) -> numpy.ndarray[numpy.float64]:
        """Assemble an image based on psana geometry.

        Args:
            det (psana.Detector): The detector object for the associated image.
                Used to access the geometry.

            img (numpy.ndarray[np.float64]): The image to assemble. Should
                generally be of shape (n_panels, ss, fs)

        Returns:
            assembled_img(numpy.ndarray[np.float64]): Assembled 2D image.
        """
        geom: GeometryAccess = det.geometry(self._task_parameters.lute_config.run)
        tmp: Tuple[numpy.ndarray[numpy.uint64], ...] = geom.get_pixel_coord_indexes()
        pixel_map: numpy.ndarray[numpy.unit64] = numpy.zeros(
            tmp[0].shape[1:] + (2,), dtype=numpy.uint64
        )
        pixel_map[..., 0] = tmp[0][0]
        pixel_map[..., 1] = tmp[1][0]
        unflattened_img: numpy.ndarray[numpy.float64] = img.reshape(
            pixel_map.shape[:-1]
        )
        idx_max_y: int = int(numpy.max(pixel_map[..., 0]) + 1)  # Adding one
        idx_max_x: int = int(numpy.max(pixel_map[..., 1]) + 1)  # casts to float
        assembled_img: numpy.ndarray[numpy.float64] = numpy.zeros(
            (idx_max_y, idx_max_x)
        )
        assembled_img[pixel_map[..., 0], pixel_map[..., 1]] = unflattened_img

        return assembled_img

    def _create_powder_plots(
        self,
        det: Detector,
        powder_hits: numpy.ndarray[numpy.float64],
        powder_misses: numpy.ndarray[numpy.float64],
    ) -> pn.Tabs:
        """Create a tabbed display of hits and misses 'powder' plots.

        Args:
            det (psana.Detector): The detector object for the associated image.
                Used to access the geometry.

            powder_hits (numpy.ndarray[np.float64]): Total max/sum projection of
                hits across the run.

            powder_misses (numpy.ndarray[np.float64]): Total max/sum projection of
                misses across the run.

        Returns:
            tabs (pn.Tabs): Tabbed display of the image plots.
        """
        assembled_powder_hits: numpy.ndarray[numpy.float64] = self._assemble_image(
            det, powder_hits
        )
        assembled_powder_misses: numpy.ndarray[numpy.float64] = self._assemble_image(
            det, powder_misses
        )

        grid_hits: pn.GridSpec = pn.GridSpec(
            sizing_mode="stretch_both",
            max_width=700,
            name=f"{self._task_parameters.det_name} - Hits",
        )
        dim: hv.Dimension = hv.Dimension(
            ("image", "Hits"),
            range=(
                numpy.nanpercentile(assembled_powder_hits, 1),
                numpy.nanpercentile(assembled_powder_hits, 99),
            ),
        )
        grid_hits[0, 0] = pn.Row(
            hv.Image(assembled_powder_hits, vdims=[dim], name=dim.label).options(
                colorbar=True, cmap="rainbow"
            )
        )

        grid_misses: pn.GridSpec = pn.GridSpec(
            sizing_mode="stretch_both",
            max_width=700,
            name=f"{self._task_parameters.det_name} - Misses",
        )
        dim = hv.Dimension(
            ("image", "Misses"),
            range=(
                numpy.nanpercentile(assembled_powder_misses, 1),
                numpy.nanpercentile(assembled_powder_misses, 99),
            ),
        )
        grid_misses[0, 0] = pn.Row(
            hv.Image(assembled_powder_misses, vdims=[dim], name=dim.label).options(
                colorbar=True, cmap="rainbow"
            )
        )

        tabs: pn.Tabs = pn.Tabs(grid_hits)
        tabs.append(grid_misses)
        return tabs

_assemble_image(det, img)

Assemble an image based on psana geometry.

Parameters:

Name Type Description Default
det Detector

The detector object for the associated image. Used to access the geometry.

required
img ndarray[float64]

The image to assemble. Should generally be of shape (n_panels, ss, fs)

required

Returns:

Name Type Description
assembled_img ndarray[float64]

Assembled 2D image.

Source code in lute/tasks/sfx_find_peaks.py
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
def _assemble_image(
    self, det: Detector, img: numpy.ndarray[numpy.float64]
) -> numpy.ndarray[numpy.float64]:
    """Assemble an image based on psana geometry.

    Args:
        det (psana.Detector): The detector object for the associated image.
            Used to access the geometry.

        img (numpy.ndarray[np.float64]): The image to assemble. Should
            generally be of shape (n_panels, ss, fs)

    Returns:
        assembled_img(numpy.ndarray[np.float64]): Assembled 2D image.
    """
    geom: GeometryAccess = det.geometry(self._task_parameters.lute_config.run)
    tmp: Tuple[numpy.ndarray[numpy.uint64], ...] = geom.get_pixel_coord_indexes()
    pixel_map: numpy.ndarray[numpy.unit64] = numpy.zeros(
        tmp[0].shape[1:] + (2,), dtype=numpy.uint64
    )
    pixel_map[..., 0] = tmp[0][0]
    pixel_map[..., 1] = tmp[1][0]
    unflattened_img: numpy.ndarray[numpy.float64] = img.reshape(
        pixel_map.shape[:-1]
    )
    idx_max_y: int = int(numpy.max(pixel_map[..., 0]) + 1)  # Adding one
    idx_max_x: int = int(numpy.max(pixel_map[..., 1]) + 1)  # casts to float
    assembled_img: numpy.ndarray[numpy.float64] = numpy.zeros(
        (idx_max_y, idx_max_x)
    )
    assembled_img[pixel_map[..., 0], pixel_map[..., 1]] = unflattened_img

    return assembled_img

_create_powder_plots(det, powder_hits, powder_misses)

Create a tabbed display of hits and misses 'powder' plots.

Parameters:

Name Type Description Default
det Detector

The detector object for the associated image. Used to access the geometry.

required
powder_hits ndarray[float64]

Total max/sum projection of hits across the run.

required
powder_misses ndarray[float64]

Total max/sum projection of misses across the run.

required

Returns:

Name Type Description
tabs Tabs

Tabbed display of the image plots.

Source code in lute/tasks/sfx_find_peaks.py
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
def _create_powder_plots(
    self,
    det: Detector,
    powder_hits: numpy.ndarray[numpy.float64],
    powder_misses: numpy.ndarray[numpy.float64],
) -> pn.Tabs:
    """Create a tabbed display of hits and misses 'powder' plots.

    Args:
        det (psana.Detector): The detector object for the associated image.
            Used to access the geometry.

        powder_hits (numpy.ndarray[np.float64]): Total max/sum projection of
            hits across the run.

        powder_misses (numpy.ndarray[np.float64]): Total max/sum projection of
            misses across the run.

    Returns:
        tabs (pn.Tabs): Tabbed display of the image plots.
    """
    assembled_powder_hits: numpy.ndarray[numpy.float64] = self._assemble_image(
        det, powder_hits
    )
    assembled_powder_misses: numpy.ndarray[numpy.float64] = self._assemble_image(
        det, powder_misses
    )

    grid_hits: pn.GridSpec = pn.GridSpec(
        sizing_mode="stretch_both",
        max_width=700,
        name=f"{self._task_parameters.det_name} - Hits",
    )
    dim: hv.Dimension = hv.Dimension(
        ("image", "Hits"),
        range=(
            numpy.nanpercentile(assembled_powder_hits, 1),
            numpy.nanpercentile(assembled_powder_hits, 99),
        ),
    )
    grid_hits[0, 0] = pn.Row(
        hv.Image(assembled_powder_hits, vdims=[dim], name=dim.label).options(
            colorbar=True, cmap="rainbow"
        )
    )

    grid_misses: pn.GridSpec = pn.GridSpec(
        sizing_mode="stretch_both",
        max_width=700,
        name=f"{self._task_parameters.det_name} - Misses",
    )
    dim = hv.Dimension(
        ("image", "Misses"),
        range=(
            numpy.nanpercentile(assembled_powder_misses, 1),
            numpy.nanpercentile(assembled_powder_misses, 99),
        ),
    )
    grid_misses[0, 0] = pn.Row(
        hv.Image(assembled_powder_misses, vdims=[dim], name=dim.label).options(
            colorbar=True, cmap="rainbow"
        )
    )

    tabs: pn.Tabs = pn.Tabs(grid_hits)
    tabs.append(grid_misses)
    return tabs

add_peaks_to_libpressio_configuration(lp_json, peaks)

Add peak infromation to libpressio configuration

Parameters:

lp_json: Dictionary storing the configuration JSON structure for the libpressio
    library.

peaks (Any): Peak information as returned by psana.

Returns:

lp_json: Updated configuration JSON structure for the libpressio library.
Source code in lute/tasks/sfx_find_peaks.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def add_peaks_to_libpressio_configuration(lp_json, peaks) -> Dict[str, Any]:
    """
    Add peak infromation to libpressio configuration

    Parameters:

        lp_json: Dictionary storing the configuration JSON structure for the libpressio
            library.

        peaks (Any): Peak information as returned by psana.

    Returns:

        lp_json: Updated configuration JSON structure for the libpressio library.
    """
    lp_json["compressor_config"]["pressio"]["roibin"]["roibin:centers"] = (
        numpy.ascontiguousarray(numpy.uint64(peaks[:, [2, 1, 0]]))
    )
    return lp_json

generate_libpressio_configuration(compressor, roi_window_size, bin_size, abs_error, libpressio_mask)

Create the configuration JSON for the libpressio library

Parameters:

compressor (Literal["sz3", "qoz"]): Compression algorithm to use
    ("qoz" or "sz3").

abs_error (float): Bound value for the absolute error.

bin_size (int): Bining Size.

roi_window_size (int): Default size of the ROI window.

libpressio_mask (NDArray): mask to be applied to the data.

Returns:

lp_json (Dict[str, Any]): Dictionary storing the JSON configuration structure
for the libpressio library
Source code in lute/tasks/sfx_find_peaks.py
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def generate_libpressio_configuration(
    compressor: Literal["sz3", "qoz"],
    roi_window_size: int,
    bin_size: int,
    abs_error: float,
    libpressio_mask,
) -> Dict[str, Any]:
    """
    Create the configuration JSON for the libpressio library

    Parameters:

        compressor (Literal["sz3", "qoz"]): Compression algorithm to use
            ("qoz" or "sz3").

        abs_error (float): Bound value for the absolute error.

        bin_size (int): Bining Size.

        roi_window_size (int): Default size of the ROI window.

        libpressio_mask (NDArray): mask to be applied to the data.

    Returns:

        lp_json (Dict[str, Any]): Dictionary storing the JSON configuration structure
        for the libpressio library
    """

    if compressor == "qoz":
        pressio_opts: Dict[str, Any] = {
            "pressio:abs": abs_error,
            "qoz": {"qoz:stride": 8},
        }
    elif compressor == "sz3":
        pressio_opts = {"pressio:abs": abs_error}

    lp_json = {
        "compressor_id": "pressio",
        "early_config": {
            "pressio": {
                "pressio:compressor": "roibin",
                "roibin": {
                    "roibin:metric": "composite",
                    "roibin:background": "mask_binning",
                    "roibin:roi": "fpzip",
                    "background": {
                        "binning:compressor": "pressio",
                        "mask_binning:compressor": "pressio",
                        "pressio": {"pressio:compressor": compressor},
                    },
                    "composite": {
                        "composite:plugins": [
                            "size",
                            "time",
                            "input_stats",
                            "error_stat",
                        ]
                    },
                },
            }
        },
        "compressor_config": {
            "pressio": {
                "roibin": {
                    "roibin:roi_size": [roi_window_size, roi_window_size, 0],
                    "roibin:centers": None,  # "roibin:roi_strategy": "coordinates",
                    "roibin:nthreads": 4,
                    "roi": {"fpzip:prec": 0},
                    "background": {
                        "mask_binning:mask": None,
                        "mask_binning:shape": [bin_size, bin_size, 1],
                        "mask_binning:nthreads": 4,
                        "pressio": pressio_opts,
                    },
                }
            }
        },
        "name": "pressio",
    }

    lp_json["compressor_config"]["pressio"]["roibin"]["background"][
        "mask_binning:mask"
    ] = (1 - libpressio_mask)

    return lp_json

write_master_file(mpi_size, outdir, exp, run, tag, n_hits_per_rank, n_hits_total)

Generate a virtual dataset to map all individual files for this run.

Parameters:

mpi_size (int): Number of ranks in the MPI pool.

outdir (str): Output directory for cxi file.

exp (str): Experiment string.

run (int): Experimental run.

tag (str): Tag to append to cxi file names.

n_hits_per_rank (List[int]): Array containing the number of hits found on each
    node processing data.

n_hits_total (int): Total number of hits found across all nodes.

Returns:

The path to the the written master file
Source code in lute/tasks/sfx_find_peaks.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def write_master_file(
    mpi_size: int,
    outdir: str,
    exp: str,
    run: int,
    tag: str,
    n_hits_per_rank: List[int],
    n_hits_total: int,
) -> Path:
    """
    Generate a virtual dataset to map all individual files for this run.

    Parameters:

        mpi_size (int): Number of ranks in the MPI pool.

        outdir (str): Output directory for cxi file.

        exp (str): Experiment string.

        run (int): Experimental run.

        tag (str): Tag to append to cxi file names.

        n_hits_per_rank (List[int]): Array containing the number of hits found on each
            node processing data.

        n_hits_total (int): Total number of hits found across all nodes.

    Returns:

        The path to the the written master file
    """
    # Retrieve paths to the files containing data
    fnames: List[Path] = []
    fi: int
    for fi in range(mpi_size):
        if n_hits_per_rank[fi] > 0:
            fnames.append(Path(outdir) / f"{exp}_r{run:0>4}_{fi}{tag}.cxi")
    if len(fnames) == 0:
        sys.exit("No hits found")

    # Retrieve list of entries to populate in the virtual hdf5 file
    dname_list, key_list, shape_list, dtype_list = [], [], [], []
    datasets = ["/entry_1/result_1", "/LCLS/detector_1", "/LCLS", "/entry_1/data_1"]
    f = h5py.File(fnames[0], "r")
    for dname in datasets:
        dset = f[dname]
        for key in dset.keys():
            if f"{dname}/{key}" not in datasets:
                dname_list.append(dname)
                key_list.append(key)
                shape_list.append(dset[key].shape)
                dtype_list.append(dset[key].dtype)
    f.close()

    # Compute cumulative powder hits and misses for all files
    # Copy mask as well
    mask: Optional[NDArray[numpy.uint16]] = None
    powder_hits, powder_misses = None, None
    for fn in fnames:
        f = h5py.File(fn, "r")
        if mask is None:
            mask = f["entry_1/data_1/mask"][:].copy()
        if powder_hits is None:
            powder_hits = f["entry_1/data_1/powderHits"][:].copy()
            powder_misses = f["entry_1/data_1/powderMisses"][:].copy()
        else:
            powder_hits = numpy.maximum(
                powder_hits, f["entry_1/data_1/powderHits"][:].copy()
            )
            powder_misses = numpy.maximum(
                powder_misses, f["entry_1/data_1/powderMisses"][:].copy()
            )
        f.close()

    vfname: Path = Path(outdir) / f"{exp}_r{run:0>4}{tag}.cxi"
    with h5py.File(vfname, "w") as vdf:

        # Write the virtual hdf5 file
        for dnum in range(len(dname_list)):
            dname = f"{dname_list[dnum]}/{key_list[dnum]}"
            if key_list[dnum] not in ["mask", "powderHits", "powderMisses"]:
                layout = h5py.VirtualLayout(
                    shape=(n_hits_total,) + shape_list[dnum][1:], dtype=dtype_list[dnum]
                )
                cursor = 0
                for i, fn in enumerate(fnames):
                    vsrc = h5py.VirtualSource(
                        fn, dname, shape=(n_hits_per_rank[i],) + shape_list[dnum][1:]
                    )
                    if len(shape_list[dnum]) == 1:
                        layout[cursor : cursor + n_hits_per_rank[i]] = vsrc
                    else:
                        layout[cursor : cursor + n_hits_per_rank[i], :] = vsrc
                    cursor += n_hits_per_rank[i]
                vdf.create_virtual_dataset(dname, layout, fillvalue=-1)

        vdf["entry_1/data_1/powderHits"] = powder_hits
        vdf["entry_1/data_1/powderMisses"] = powder_misses
        vdf["entry_1/data_1/mask"] = mask

    return vfname