Skip to content

bayfai

Classes for geometry optimization tasks.

Classes:

Name Description
BayFAI

optimize detector geometry using PyFAI coupled with Bayesian Optimization

BayFAI

Bases: Task

Optimize detector geometry using PyFAI coupled with Bayesian Optimization.

Source code in lute/tasks/bayfai.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
class BayFAI(Task):
    """Optimize detector geometry using PyFAI coupled with Bayesian Optimization."""

    def __init__(self, *, params: BayFAIParameters, use_mpi: bool = True) -> None:
        super().__init__(params=params, use_mpi=use_mpi)

    def _run(self) -> None:
        start_time = time.time()
        assert isinstance(self._task_parameters, BayFAIParameters)
        optimizer: Union[BayFAIOpt, BayFAIOpt2]
        if IS_PSANA2:
            optimizer = BayFAIOpt2(
                exp=self._task_parameters.lute_config.experiment,
                run=int(self._task_parameters.lute_config.run),
            )
        else:
            optimizer = BayFAIOpt(
                exp=self._task_parameters.lute_config.experiment,
                run=int(self._task_parameters.lute_config.run),
            )
        optimizer.setup(
            detname=self._task_parameters.detname,
            powder=self._task_parameters.powder,
            smooth=self._task_parameters.preprocess,
            calibrant=self._task_parameters.calibrant,
            fixed=self._task_parameters.fixed,
            in_file=self._task_parameters.in_file,
        )
        bayfai_hyperparams = {
            "n_samples": self._task_parameters.bo_params.n_samples,
            "n_iterations": self._task_parameters.bo_params.n_iterations,
            "max_rings": self._task_parameters.bo_params.max_rings,
            "Imin": optimizer.Imin,
            "prior": self._task_parameters.bo_params.prior,
            "beta": self._task_parameters.bo_params.beta,
            "step": self._task_parameters.bo_params.step,
            "seed": self._task_parameters.bo_params.seed,
        }
        optimizer.bayfai_opt(
            center=self._task_parameters.center,
            bounds=self._task_parameters.bounds,
            res=self._task_parameters.resolutions,
            **bayfai_hyperparams,
        )
        if optimizer.rank == 0:
            logger.info("Optimization complete")
            logger.info(f"Elapsed time: {time.time() - start_time:.2f} s")
            params = optimizer.params
            score = optimizer.neglog_score
            distance = params[0]
            cx = params[1]
            cy = params[2]
            logger.info(f"Detector Distance to Sample: {distance:.6f}")
            logger.info(f"Beam center ({cx:.6f}, {cy:.6f})")
            logger.info(
                f"Rotations: \u03b8x = ({params[3]:.2e}, \u03b8y = {params[4]:.2e}, \u03b8z = {params[5]:.2e})"
            )
            logger.info(f"Best Score: {score:.2e}")
            fig_folder = os.path.join(
                self._task_parameters.lute_config.work_dir, "figs"
            )
            os.makedirs(fig_folder, exist_ok=True)
            plot = f"{fig_folder}/bayFAI_summary_{optimizer.exp}_r{optimizer.run:0>4}_{self._task_parameters.detname}.png"
            calib_detector = optimizer.update_geometry(self._task_parameters.out_file)
            optimizer.upload_geometry(
                self._task_parameters.out_file, self._task_parameters.detname
            )
            powder_plot, qs, resolutions = optimizer.create_interactive_powder()
            diagnostics_plot = optimizer.create_diagnostics_panel(
                detector=calib_detector,
                distance=distance,
            )
            _ = optimizer.create_summary_plot(
                detector=calib_detector,
                distance=distance,
                plot=plot,
            )
            pn.extension("matplotlib", "bokeh")
            plots = pn.Row(
                pn.pane.Matplotlib(diagnostics_plot, sizing_mode="fixed"),
                powder_plot,
            )
            content = pn.Column(
                pn.pane.Markdown(
                    "### Detector Geometry Optimization Summary",
                    styles={
                        "font-size": "2em",
                        "font-weight": "bold",
                        "text-align": "center",
                        "margin": "0 auto",
                        "display": "block",
                    },
                ),
                plots,
                sizing_mode="stretch_width",
            )
            content.save(
                f"{fig_folder}/bayFAI_summary_{optimizer.exp}_r{optimizer.run:0>4}_{self._task_parameters.detname}.html",
                embed=True,
            )
            plots = pn.Tabs(content)
            self._result.summary = []
            self._result.summary.append(
                {
                    "Detector distance (m)": f"{params[0]:.6f}",
                    "Detector center (pix)": (
                        f"{cx/optimizer.detector.pixel_size:.3f}",
                        f"{cy/optimizer.detector.pixel_size:.3f}",
                    ),
                    "Lowest q": f"{qs['closest']:.3f} \u00c5-1 | {resolutions['closest']:.3f} \u00c5",
                    "Highest q": f"{qs['furthest']:.3f} \u00c5-1 | {resolutions['furthest']:.3f} \u00c5 (detector corner)",
                }
            )
            logger.info(
                f">>> Lowest q : {qs['closest']:.3f} \u00c5-1 | {resolutions['closest']:.3f} \u00c5"
            )
            logger.info(
                f">>> Highest q : {qs['furthest']:.3f} \u00c5-1 | {resolutions['furthest']:.3f} \u00c5 (detector corner)"
            )
            self._result.summary.append(
                ElogSummaryPlots(
                    f"Geometry_Fit/r{self._task_parameters.lute_config.run:0>4}/{self._task_parameters.detname}",
                    plots,
                )
            )
            self._result.task_status = TaskStatus.COMPLETED