Skip to content

_smalldata

Base classes for working with SmallData HDF5 files.

Classes defined in this module provide an interface to extracting data from SmallData files and analyzing it. They are subclassed in the main smalldata module for implementation into runnable Tasks.

Classes:

Name Description
AnalyzeSmallData

Analyze a smalldata file, with MPI support.

AnalyzeSmallData

Bases: Task

Base class for analyzing a SmallData HDF5 file with MPI support.

Source code in lute/tasks/_smalldata.py
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
class AnalyzeSmallData(Task):
    """Base class for analyzing a SmallData HDF5 file with MPI support."""

    _LARGE_DETNAMES: List[str] = ["epix10k2M", "Rayonix", "Jungfrau4M"]
    _SMALL_DETNAMES: List[str] = ["epix_1", "epix_2"]

    def __init__(self, *, params: TaskParameters, use_mpi: bool = True) -> None:
        super().__init__(params=params, use_mpi=use_mpi)
        hv.extension("bokeh")
        pn.extension()
        self._mpi_comm: MPI.Intracomm = MPI.COMM_WORLD
        self._mpi_rank: int = self._mpi_comm.Get_rank()
        self._mpi_size: int = self._mpi_comm.Get_size()
        try:
            self._smd_h5: h5py.File = h5py.File(self._task_parameters.smd_path, "r")
        except Exception:
            if self._mpi_rank == 0:
                logger.error(f"Failed to open file: {self._task_parameters.smd_path}!")
            self._mpi_comm.Barrier()
            sys.exit(-1)

        self._events_per_rank: np.ndarray[np.int64]
        self._start_indices_per_rank: np.ndarray[np.int64]
        if self._mpi_rank == 0:
            self._total_num_events: int = len(self._smd_h5["event_time"][()])
            quotient: int
            remainder: int
            quotient, remainder = divmod(self._total_num_events, self._mpi_size)
            self._events_per_rank = np.array(
                [
                    quotient + 1 if rank < remainder else quotient
                    for rank in range(self._mpi_size)
                ]
            )
            self._start_indices_per_rank = np.zeros(self._mpi_size, dtype=np.int64)
            self._start_indices_per_rank[1:] = np.cumsum(self._events_per_rank[:-1])
        else:
            self._events_per_rank = np.zeros(self._mpi_size, dtype=np.int64)
            self._start_indices_per_rank = np.zeros(self._mpi_size, dtype=np.int64)
        self._mpi_comm.Bcast(self._events_per_rank, root=0)
        self._mpi_comm.Bcast(self._start_indices_per_rank, root=0)
        self._xss_detname: str
        if self._task_parameters.xss_detname is None:
            for key in self._smd_h5.keys():
                if key in AnalyzeSmallData._LARGE_DETNAMES:
                    self._xss_detname = key
                    logger.debug(f"Assuming XSS detector is: {key}.")
                    break
            else:
                logger.error("No XSS detname provided and could not determine detname!")
                sys.exit(-1)
        else:
            self._xss_detname = self._task_parameters.xss_detname

        # Basic RANK-LOCAL variables - Each rank holds a subset of data
        ################################################################
        self._num_events: int = self._events_per_rank[self._mpi_rank]
        self._start_idx: int = self._start_indices_per_rank[self._mpi_rank]
        self._stop_idx: int = self._start_idx + self._num_events
        logger.debug(
            f"Rank {self._mpi_rank}: Processing {self._num_events} events from "
            f"event {self._start_idx}."
        )

        # Generic filtering variables
        self._filter_dict: Dict[str, np.ndarray[np.float64]] = {}
        self._xray_intensity: np.ndarray[np.float64]
        self._integrated_intensity: np.ndarray[np.float64]

        # Scan vars
        self._scan_var_name: Optional[str] = None
        self._scan_values: np.ndarray[np.float64]

    def _pre_run(self) -> None: ...

    def _run(self) -> None: ...

    def _post_run(self) -> None: ...

    def _extract_standard_data(self) -> None:
        """Setup up stored attributes by taking data from the smalldata hdf5 file."""

        self._extract_az_int()
        try:
            self._xray_intensity = self._smd_h5[self._task_parameters.ipm_var][
                self._start_idx : self._stop_idx
            ]
        except KeyError as e:
            logger.error("ipm data not found! Check config!")
        self._integrated_intensity = np.nansum(self._az_int, axis=(1, 2))
        self._setup_std_filters()

        if isinstance(self._task_parameters.scan_var, str):
            scan_var: str = self._task_parameters.scan_var
            try:
                self._scan_values = self._smd_h5[f"scan/{scan_var}"][
                    self._start_idx : self._stop_idx
                ]
                self._scan_var_name = scan_var
            except KeyError as e:
                logger.error(f"Scan variable {scan_var} not found!")
        elif isinstance(self._task_parameters.scan_var, list):
            for scan_var in self._task_parameters.scan_var:
                try:
                    self._scan_values = self._smd_h5[f"scan/{scan_var}"][
                        self._start_idx : self._stop_idx
                    ]
                    self._scan_var_name = scan_var
                    break
                except KeyError as e:
                    logger.debug(f"Scan variable {scan_var} not found!")
                    continue
        if not hasattr(self, "_scan_values"):
            # Create a set of scan values if none of the above scan
            # variables are found, either lxt_fast or linear set.
            try:
                self._scan_values = self._smd_h5["enc/lasDelay"][
                    self._start_idx : self._stop_idx
                ]
                self._scan_var_name = "lxt_fast"
                logger.debug("Using scan variable lxt_fast")
            except KeyError as e:
                logger.debug("Scan variable lxt_fast not found!")
                self._scan_values = np.linspace(
                    self._start_idx, self._stop_idx, self._num_events
                )
                logger.debug(
                    "No scans found, using linearly spaced data for _scan_values."
                )

    def _extract_az_int(self) -> None:
        """Try to extract the azimuthal integration data from HDF5 file.

        This internal method will search first to see if a detector has been
        provided as the scattering detector. If not, it will attempt to guess
        which detector to use. It will attempt to extract both the internal
        integration data and PyFAI integrated data (which have different
        interfaces). If both are present, it will only extract the internal
        algorithm data.
        """
        detname: str = self._xss_detname
        try:
            self._extract_az_int_smd_internal(detname)
            logger.debug(
                f"Extracted internal azimuthal integration data for {detname}."
            )
        except Exception:
            try:
                self._extract_az_int_pyfai(detname)
                logger.debug(
                    f"Extracted PyFAI azimuthal integration data for {detname}."
                )
            except Exception:
                logger.error("No azimuthal integration data found.")
                self._mpi_comm.Barrier()
                sys.exit(-1)

    def _extract_az_int_smd_internal(self, detname: str) -> None:
        """Extract stored data from SmallData's azimuthal integration algorithm.

        Args:
            detname (str): The detector name to extract data for.
        """

        self._az_int = self._smd_h5[f"{detname}/azav_azav"][
            self._start_idx : self._stop_idx
        ]  # 3D
        self._q_vals = self._smd_h5[f"UserDataCfg/{detname}/azav__azav_q"][()]
        self._phi_vals = self._smd_h5[f"UserDataCfg/{detname}/azav__azav_phiVec"][()]

    def _extract_az_int_pyfai(self, detname: str) -> None:
        """Extract stored data from PyFAI's azimuthal integration algorithm.

        Args:
            detname (str): The detector name to extract data for.
        """

        self._az_int = self._smd_h5[f"{detname}/pyfai_azav"][
            self._start_idx : self._stop_idx
        ]  # 3D
        self._q_vals = self._smd_h5[f"{detname}/pyfai_q"][()][0]
        self._phi_vals = self._smd_h5[f"{detname}/pyfai_az"][()][0]

    def _setup_std_filters(self) -> None:
        """Setup the individual standard event filters.

        Sets up light status (X-ray and laser) filters, and adjustable filters
        based on, e.g., thresholds.
        """
        # For filtering based on event type
        self._filter_dict["xray on"] = (
            self._smd_h5["lightStatus/xray"][self._start_idx : self._stop_idx] == 1
        )
        self._filter_dict["laser on"] = (
            self._smd_h5["lightStatus/laser"][self._start_idx : self._stop_idx] == 1
        )

        self._filter_dict["xray off"] = (
            self._smd_h5["lightStatus/xray"][self._start_idx : self._stop_idx] == 0
        )
        self._filter_dict["laser off"] = (
            self._smd_h5["lightStatus/laser"][self._start_idx : self._stop_idx] == 0
        )

        # Create scattering and ipm thresholds for first time
        self._update_filters()

    def _update_filters(self) -> None:
        """Update stored event filters that are based on adjustable parameters.

        E.g. update the minimum scattering intensity to use in analyses.
        """
        scattering_thresh: float = self._task_parameters.thresholds.min_Iscat
        ipm_thresh: float = self._task_parameters.thresholds.min_ipm
        self._filter_dict["total scattering"] = (
            self._integrated_intensity > scattering_thresh
        )
        if hasattr(self, "_xray_intensity"):
            self._filter_dict["ipm"] = self._xray_intensity > ipm_thresh
        else:
            self._filter_dict["ipm"] = np.ones([self._num_events], dtype=bool)

    def _calc_norm_by_qrange(
        self, q_limits: Tuple[float, float] = (0.9, 3.5)
    ) -> np.ndarray[np.float64]:
        """Calculate a normalization factor by averaging over a range of Q values.

        Args:
            q_limits (Tuple[float, float]): The lower and upper limit of the
                Q-range to average.

        Returns:
            norm (np.ndarray[np.float64]): The 2D norm with shape
                (num_events, num_phi)
        """
        norm_range: np.array = self._q_vals > q_limits[0]
        norm_range &= self._q_vals < q_limits[1]
        return np.nanmean(self._az_int[..., norm_range], axis=-1)

    def _calc_norm_by_max(self) -> np.ndarray[np.float64]:
        """Calculate a normalization factor by taking the maximum of each profile.

        Returns:
        norm (np.ndarray[np.float64]): The 1D norm with shape (num_events)
        """
        return np.nanmax(self._az_int, axis=(1, 2))

    def _calc_1d_water_norm(self) -> np.ndarray[np.float64]:
        """Calculate normalization factors by integrating the water ring.

        https://www.osti.gov/servlets/purl/1760438 says to use 1.5-3.5 A-1
        """
        # _ = self.find_solvent_argmax(self.scattering_laser_on_mean)
        # min_q_idx: int = self._solvent_peak_idx - 10
        # max_q_idx: int = self._solvent_peak_idx + 1
        # return np.nanmean(
        #    self.calc_norm_by_qrange((self.q_vals[min_q_idx], self.q_vals[max_q_idx])),
        #    axis=-1,
        # )
        return np.nanmean(self._calc_norm_by_qrange((1.5, 3.5)), axis=-1)

    def _aggregate_filters(
        self, filter_vars: str = ("xray on, laser on, total scattering, ipm")
    ) -> np.ndarray[np.bool_]:
        """Combine a number of possible data filters.

        Takes a string of filters to be applied in the order specified. The
        order matters for some filters, e.g. if "percentage" is selected it
        should be applied after total scattering. See below for a list of
        filters.

        Possible filters:
            "xray on": Take shots where X-rays are on,
            "xray off": Take shots where X-rays are off,
            "laser on": Take shots where laser is on,
            "laser off": Take shots where laser is off,
            "ipm": Take shots with X-ray intensity above a value (ipm value),
            "total scattering": Take shots with minimum integrated scattering,
            "percentage": Extract this percentage of data centered on the max
                scattering intensity. Should be applied after total scatteirng.
                E.g. Include 50% of shots centered around the Q-value with
                maximum scattering.

        Args:
            filter_vars (str): A string of comma-seperated filters to apply,
                taken from the list above. E.g. "xray on, laser on".

        Returns:
            total_filter (np.ndarray[np.bool]): A 1D boolean array with a shape
                of (num_events) which can be used to index and filter a data array.
        """
        filters: List[str] = [f.strip() for f in filter_vars.split(",")]
        total_filter: np.ndarray = np.ones([self._num_events], dtype=bool)

        for data_filter in filters:
            try:
                total_filter &= self._filter_dict[data_filter]
            except KeyError as e:
                logger.debug(
                    f"Unrecognized filter requested: {data_filter}. "
                    "Ignoring and continuing processing."
                )
                continue

        return total_filter

    def _calc_xss_dark_mean(
        self, profiles: np.ndarray[np.float64]
    ) -> np.ndarray[np.float64]:
        """Calculate the dark (X-ray off) mean of a set of XSS profiles.

        Args:
            profiles (np.ndarray[np.float64]): Set of profiles to calculate the
                dark mean from. Shape: (n_events, q_bins)
        Returns:
            dark_mean (np.ndarray[np.float64]): The calculated dark mean.
                Shape: (q_bins)
        """
        dark_mean: np.ndarray[np.float64]
        try:
            dark_mean = np.nanmean(profiles[self._filter_dict["xray off"]], axis=0)
            dark_mean = self._mpi_comm.allreduce(dark_mean, op=MPI.SUM)
            dark_mean /= self._mpi_size
        except KeyError:
            logger.debug(
                "No X-ray off event information for filtering. "
                "Dark mean will be all zeros."
            )
            dark_mean = np.zeros([self._num_events])
        return dark_mean

    def _find_solvent_argmax(self, corrected_profile: np.ndarray) -> int:
        """Find the index of the solvent ring maximum.

        Currently just a hack around SciPy find_peaks.

        Args:
            corrected_profile (np.ndarray[np.float64]): 1D normalized and dark
                mean corrected, laser on, scattering profile.

        Returns:
            peak_idx (int): The index where the solvent maximum is located.
        """
        res: Tuple[np.ndarray[np.int64], Dict[str, np.ndarray[np.float64]]] = (
            find_peaks(corrected_profile, 1)
        )
        try:
            peak_indices: np.ndarray = res[0]
            peak_heights: np.ndarray = res[1]["peak_heights"]
        except KeyError as e:
            logger.debug("No peaks found")
            return np.argmax(corrected_profile)

        peak_idx: int = peak_indices[
            np.argmax(peak_heights)
        ]  # peak_indices[0]  # peak_indices[peak_select - 1]
        self._solvent_peak_idx = peak_idx
        return peak_idx

    def _fit_overlap(
        self,
        laser_on: np.ndarray[np.float64],
        bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
        guess: Optional[List[float]] = None,
    ) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]:
        """Fit overlap based on scattering difference signal to a Gaussian.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                scattering profile.

            bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 2D difference signal of shape
                (q_bins, scan_bins).

            guess (Optional[List[float]]): A list of initial parameter guesses
                for Gaussian fit in the order (amplitude, x0, sigma, background
                offset)

        Returns:
            raw_curve (np.ndarray[np.float64]): 1D difference slice at a specific
                Q value used for calculating the overlap.

            opt (np.ndarray[np.float64]): Optimized parameters.

            res (np.ndarray[np.float64]): Covariances.
        """
        Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]
        max_pt: int = self._find_solvent_argmax(laser_on)
        try:
            idx_peak_q: int = max_pt + 10
        except IndexError as e:
            logger.debug(f"{e}: No non-nan values found.")
            idx_peak_q: int = 15

        raw_curve: np.ndarray = diff[idx_peak_q]
        if not guess:
            max_val: int = raw_curve.max()
            min_val: int = raw_curve.min()
            # guess = [amplitude, center, stddev, bkgnd]
            guess = [0, 0, 0, 0]
            x0: float
            if max_val > np.abs(min_val):
                x0 = bins[raw_curve.argmax()]
                guess[0] = max_val
            else:
                x0 = bins[raw_curve.argmin()]
                guess[0] = min_val
            guess[1] = x0
            guess[2] = np.abs(bins[-1] - bins[0]) / 20
            guess[3] = np.min(raw_curve)
        try:
            opt, res = curve_fit(gaussian, bins, raw_curve, p0=guess, maxfev=999999)
        except ValueError as e:
            logger.debug(f"{e}:\n No non-nan values...")
            opt = guess
            res = None

        return raw_curve, opt, res

    def _fit_convolution_fwhm(
        self, trace: np.ndarray, bins: np.ndarray[np.float64]
    ) -> float:
        """Calculate the FWHM of a convolution signal.

        Args:
            trace (np.ndarray[np.float64]): 1D convolution trace.

            bins (np.ndarray[np.float64]): 1D set of bins used.

        Returns:
            fwhm (float): Calculated FWHM.
        """
        from scipy.interpolate import UnivariateSpline

        x = np.linspace(0, len(trace) - 1, len(trace))
        spline = UnivariateSpline(x, (trace - np.max(trace) / 2), s=0)
        roots = spline.roots()
        if len(roots) == 2:
            lb, rb = roots
            fwhm = rb - lb
        else:
            max_val: int = trace.max()
            min_val: int = trace.min()
            guess: List[Union[float, int]] = [0, 0, 0, 0]
            x0: Union[float, int]
            if max_val > np.abs(min_val):
                x0 = bins[trace.argmax()]
                guess[0] = max_val
            else:
                x0 = bins[trace.argmin()]
                guess[0] = min_val
            guess[1] = x0
            guess[2] = np.abs(bins[-1] - bins[0]) / 20
            guess[3] = np.min(trace)
            opt, res = curve_fit(
                gaussian, bins, np.nan_to_num(trace), p0=guess, maxfev=999999
            )
            fwhm = sigma_to_fwhm(opt[2])
        return fwhm

    def _convolution_fit(
        self,
        laser_on: np.ndarray[np.float64],
        bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], int, float]:
        """Fits a time scan through convolution with Heaviside kernel.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                scattering profile.

            bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 2D difference signal of shape
                (q_bins, scan_bins).

        Returns:
            raw_curve (np.ndarray[np.float64]): 1D difference slice at a specific
                Q value used for calculating the overlap.

            trace (np.ndarray[np.float64]): 1D convolution trace.

            center (int): The index of the center from the convolution.

            fwhm (float): Width of the convlution signal (fwhm).
        """
        from scipy.signal import fftconvolve

        results: List[Tuple] = []
        max_pt: int = self._find_solvent_argmax(laser_on)
        raw_curve: np.ndarray = np.nan_to_num(diff[max_pt + 10])
        npts: int = len(raw_curve)
        kernel: np.ndarray = np.zeros([npts])
        kernel[: npts // 2] = 1
        trace: np.ndarray = fftconvolve(raw_curve, kernel, mode="same")
        center: int = trace.argmax()
        fwhm: float = self._fit_convolution_fwhm(trace, bins)
        return raw_curve, trace, center, fwhm

    # XAS - Extraction and TR difference
    ############################################################################
    def _extract_xas(self, detname: str) -> None:
        """Extract XAS specific data.

        Extracts the integrated sum of an ROI as well as an CCM position data.
        Will search for both the readback value PV and, if present, the setpoint
        PV.

        Args:
            detname (str): The detector name to extract data for.
        """
        self._xas_raw = self._smd_h5[f"{detname}/ROI_0_sum"][
            self._start_idx : self._stop_idx
        ]
        self._ccm_E = self._smd_h5[self._task_parameters.ccm][
            self._start_idx : self._stop_idx
        ]
        if self._task_parameters.ccm_set is not None:
            try:
                self._ccm_E_set_pt = self._smd_h5[self._task_parameters.ccm_set][
                    self._start_idx : self._stop_idx
                ]
            except KeyError:
                logger.error("No ccm_E_setpoint data. Will use fallback binning.")
        self._element: Optional[str] = self._task_parameters.element

    def _calc_binned_difference_xas(
        self,
    ) -> Tuple[
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
    ]:
        """Calculate the binned difference absorption.

        Calculates the 1D difference absorption for a set of CCM bins.
        Final difference shape is 1D: (ccm_bins). Also returns bins and
        the laser on/off profiles.

        Returns None for all values if the final number of CCM bins is small (<=2).

        Returns:
            bins (Optional[np.ndarray[np.float64]]): 1D array of ccm bins used.

            diff (Optional[np.ndarray[np.float64]]): 1D binned difference absorption
                of shape (ccm_bins)

            laser_on (Optional[np.ndarray[np.float64]]): 1D laser on absorption
                profiles of shape (ccm_bins)

            laser_off (Optional[np.ndarray[np.float64]]): 1D laser off absorption
                profiles of shape (ccm_bins)
        """
        nbins: int
        b_edges: np.ndarray[np.float64]
        if self._ccm_E_set_pt is not None:
            # nbins = len(self.ccm_E_set_pt)
            nbins, b_edges = self._calc_ccm_bins_by_set_pt()
        else:
            nbins, b_edges = self._calc_ccm_bins_by_unique()

        if nbins <= 2:
            return None, None, None, None

        filter_las_on: np.ndarray = self._aggregate_filters()
        filter_las_off: np.ndarray = self._aggregate_filters(
            filter_vars="xray on, laser off, ipm, total scattering"
        )
        norm: np.ndarray[np.float64] = self._calc_1d_water_norm()
        if (norm < 0).any():
            norm = self._xray_intensity
        xas_norm: np.ndarray[np.float64] = self._xas_raw / norm

        xas_laser_on: np.ndarray = np.zeros(nbins)
        xas_laser_off: np.ndarray = np.zeros(nbins)
        # bins are [lower, upper) except for last which is [lower, upper]
        # _, b_edges = np.histogram(self.ccm_E_unique, bins=nbins)
        bins: np.ndarray = np.zeros([nbins])
        i: int = 0
        while i < nbins:  # - win_size + 1
            win = b_edges[i : i + 2]
            bins[i] = win.mean()
            i += 1

        for i in range(nbins):
            lower: int = b_edges[i]
            upper: int = b_edges[i + 1]
            # Prepare CCM_E bin
            energy_filt: np.ndarray
            if i == nbins - 1:
                # upper edge inclusive bin
                energy_filt = self._ccm_E <= upper
            else:
                energy_filt = self._ccm_E < upper
            energy_filt &= self._ccm_E >= lower
            full_filt_on = filter_las_on & energy_filt
            full_filt_off = filter_las_off & energy_filt
            xas_laser_on[i] = np.nanmean(xas_norm[full_filt_on])
            xas_laser_off[i] = np.nanmean(xas_norm[full_filt_off])

        return (
            bins,
            np.nan_to_num(xas_laser_on - xas_laser_off),
            np.nan_to_num(xas_laser_on),
            np.nan_to_num(xas_laser_off),
        )

    # XES - Extraction and TR difference
    ############################################################################
    def _extract_xes(self, detname: str) -> None:
        """Extract XAS specific data.

        Extracts individual ROIs and applys projections to extract the XES
        spectra. Depending on input TaskParameters, it will optionally rotate
        each ROI by some degrees prior to projection.

        By default, this method will read all ROIs into memory simultaneously
        and then project them. Alternatively, e.g. if encountering memory issues,
        input parameters can be changed to switch to reading in batches. Set the
        `batch_size` parameter to indicate the number of events to read into memory
        at once.

        Args:
            detname (str): The detector name to extract data for.
        """
        # Lets assume they set up the ROI nicley?
        # By xcsl1004821
        # proj0 should be spatial distribution
        # proj1 should be XES (unless invert == True)
        spatial_axis: int
        spectral_axis: int
        if not self._task_parameters.invert_xes_axes:
            spatial_axis = 0
            spectral_axis = 1
        else:
            spatial_axis = 1
            spectral_axis = 0

        self._xes: np.ndarray[np.float64]
        if self._task_parameters.batch_size:
            # Read data in batches for OOM issues
            size: int = self._task_parameters.batch_size

            for start in range(self._start_idx, self._stop_idx, size):
                end: int
                if start + size > self._stop_idx:
                    end = self._stop_idx
                else:
                    end = start + size
                xes_roi = self._smd_h5[f"{detname}/ROI_0_area"][start:end]
                if start == self._start_idx:
                    self._xes = np.zeros(
                        (self._num_events, xes_roi.shape[spatial_axis + 1])
                    )
                if self._task_parameters.rot_angle is not None:
                    from scipy.ndimage import rotate

                    xes_roi = rotate(
                        xes_roi, angle=self._task_parameters.rot_angle, axes=(2, 1)
                    )
                spatial_dist: np.ndarray[np.float64] = np.nansum(
                    xes_roi, axis=(0, spatial_axis + 1)
                )
                guess_idx: int = np.argmax(spatial_dist)
                if not self._task_parameters.invert_xes_axes:
                    self._xes[start:end] = np.nansum(
                        xes_roi[..., guess_idx - 5 : guess_idx + 5],
                        axis=spectral_axis + 1,
                    )
                else:
                    self._xes[start:end] = np.nansum(
                        xes_roi[:, guess_idx - 5 : guess_idx + 5, :],
                        axis=spectral_axis + 1,
                    )
        else:
            xes_roi = self._smd_h5[f"{detname}/ROI_0_area"][
                self._start_idx : self._stop_idx
            ]
            if self._task_parameters.rot_angle is not None:
                from scipy.ndimage import rotate

                xes_roi = rotate(
                    xes_roi, angle=self._task_parameters.rot_angle, axes=(2, 1)
                )

            spatial_dist: np.ndarray[np.float64] = np.nansum(
                xes_roi, axis=(0, spatial_axis + 1)
            )
            guess_idx: int = np.argmax(spatial_dist)
            if not self._task_parameters.invert_xes_axes:
                self._xes = np.nansum(
                    xes_roi[..., guess_idx - 5 : guess_idx + 5], axis=spectral_axis + 1
                )
            else:
                self._xes = np.nansum(
                    xes_roi[:, guess_idx - 5 : guess_idx + 5, :], axis=spectral_axis + 1
                )

    def _calc_avg_difference_xes(
        self,
    ) -> Tuple[
        np.ndarray[np.float64],
        np.ndarray[np.float64],
        np.ndarray[np.float64],
    ]:
        """Calculate the average difference XES.

        Calculates the 1D difference emission spectra in pixels.
        Final difference shape is 1D: (pixels). Also returns the laser on/off
        profiles. The number of pixels is determined by the projection axis after
        image rotation if that is requested (see _extract_xes).

        Returns:
            diff (np.ndarray[np.float64]): 1D binned difference emission of shape
                (pixels)

            laser_on (np.ndarray[np.float64]): 1D laser on emission profiles
                of shape (pixels)

            laser_off (np.ndarray[np.float64]): 1D laser off emission profiles
                of shape (pixels)
        """

        filter_las_on: np.ndarray[np.float64] = self._aggregate_filters()
        filter_las_off: np.ndarray[np.float64] = self._aggregate_filters(
            filter_vars="xray on, laser off, ipm, total scattering"
        )

        xes_on: np.ndarray[np.float64] = np.nanmean(self._xes[filter_las_on], axis=0)
        xes_off: np.ndarray[np.float64] = np.nanmean(self._xes[filter_las_off], axis=0)

        diff: np.ndarray[np.float64] = xes_on - xes_off

        return diff, xes_on, xes_off

    # Binning
    ############################################################################
    def _calc_ccm_bins_by_set_pt(self) -> np.ndarray[np.float64]:
        """Caculate bin edges based on the provided CCM_E set points.

        Returns:
            bins (np.ndarray[np.float64]): 1D array of ccm bins used.
        """
        if self._ccm_E_set_pt is not None:
            all_set_pts: np.ndarray[np.float64] = np.zeros(
                np.sum(self._events_per_rank), dtype=np.float64
            )
            self._mpi_comm.Allgatherv(
                self._ccm_E_set_pt,
                [
                    all_set_pts,
                    self._events_per_rank,
                    self._start_indices_per_rank,
                    MPI.DOUBLE,
                ],
            )
            bin_centers: np.ndarray[np.float64] = np.sort(np.unique(all_set_pts))
            nbins: int = len(bin_centers)
        else:
            raise RuntimeError("Set points not provided/not found!")

        edges: np.ndarray[np.float64] = np.empty(nbins + 1)
        edges[1:-1] = (bin_centers[1:] + bin_centers[:-1]) / 2
        # How to handle the ends?
        # Lower bin inclusive, upper not (except last)
        edges[0] = np.min(bin_centers)
        edges[-1] = np.max(bin_centers)

        return nbins, edges

    def _calc_ccm_bins_by_unique(
        self, nbins: int = 50
    ) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64]]:
        """Calculate bin edges based on unique CCM_E recorded values.

        Args:
            nbins (int): Number of bins to create. 50-100 is empirically useful.

        Returns:
            nbins (int): Number of bins.

            b_edges (np.ndarray[np.float64]): Bin edges.
        """
        all_ccm_values: np.ndarray[np.float64] = np.zeros(
            np.sum(self._events_per_rank), dtype=np.float64
        )
        self._mpi_comm.Allgatherv(
            self._ccm_E,
            [
                all_ccm_values,
                self._events_per_rank,
                self._start_indices_per_rank,
                MPI.DOUBLE,
            ],
        )
        unique: np.ndarray[np.float64] = np.unique(all_ccm_values)
        del all_ccm_values
        nbins = np.min([nbins, len(unique)])
        b_edges = np.histogram_bin_edges(unique, bins=nbins)
        return nbins, b_edges

    def _calc_scan_bins(self, nbins: int = 51) -> np.ndarray[np.float64]:
        """Calculate a set of scan bins.

        Args:
            nbins (int): Number of bins to create.

        Returns:
            scan_bins (np.ndarray[np.float64]): 1D set of scan bins.
        """
        # Create a full set of scan values
        all_scan_values: np.ndarray[np.float64] = np.zeros(
            np.sum(self._events_per_rank), dtype=np.float64
        )
        self._mpi_comm.Allgatherv(
            self._scan_values,
            [
                all_scan_values,
                self._events_per_rank,
                self._start_indices_per_rank,
                MPI.DOUBLE,
            ],
        )
        all_scan_values = np.nan_to_num(all_scan_values)
        scan_bins: np.ndarray[np.float64]
        if self._scan_var_name is not None and "lxt_fast" in self._scan_var_name:
            scan_bins = np.histogram_bin_edges(np.unique(all_scan_values), bins=nbins)
        elif self._scan_var_name is not None:
            scan_bins = np.unique(all_scan_values)
        else:
            scan_bins = np.ones([1])
        return scan_bins

    # Differences by scan
    ############################################################################

    def _calc_scan_binned_difference_xss(
        self,
    ) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]:
        """Calculate the binned difference scattering.

        Calculates the 1D difference scattering for each bin of a scan variable.
        Final difference shape is 2D: (q_bins, scan_bins). Also returns bins and
        the laser on profiles.

        Returns:
            bins (np.ndarray[np.float64]): 1D array of scan bins used.

            diff (np.ndarray[np.float64]): 2D binned difference scattering of shape
                (q_bins, scan_bins)

            laser_on (np.ndarray[np.float64]): 2D laser on scattering profiles
                of shape (n_events_las_on, q_bins)
        """
        profiles: np.ndarray[np.float64, np.float64] = np.nansum(self._az_int, axis=1)
        dark_mean: np.ndarray[np.float64] = self._calc_xss_dark_mean(profiles)
        if len(np.unique(dark_mean)) > 1:
            # Can be len == 1 if all nan
            profiles -= dark_mean
        norm: np.ndarray[np.float64] = self._calc_norm_by_qrange()
        profiles = (profiles.T / np.nanmean(norm, axis=-1).T).T
        del dark_mean
        del norm

        filter_las_on: np.ndarray[np.float64] = self._aggregate_filters()
        filter_las_off: np.ndarray[np.float64] = self._aggregate_filters(
            filter_vars="xray on, laser off, ipm, total scattering"
        )
        normed_xss_las_on: np.ndarray[np.float64] = profiles[filter_las_on]
        normed_xss_las_off: np.ndarray[np.float64] = profiles[filter_las_off]

        bins: np.ndarray[np.float64] = self._calc_scan_bins()
        binned_on: np.ndarray[np.float64] = np.zeros((len(self._q_vals), len(bins)))
        binned_off: np.ndarray[np.float64] = np.zeros((len(self._q_vals), len(bins)))
        scanvals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
        scanvals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]

        idx: int
        scan_bin: float
        for idx, scan_bin in enumerate(bins):
            if self._scan_var_name is not None and "lxt_fast" in self._scan_var_name:
                if idx == len(bins) - 1:
                    continue
                mask_on: np.ndarray[np.bool_] = (scanvals_las_on >= scan_bin) * (
                    scanvals_las_on < bins[idx + 1]
                )
                mask_off: np.ndarray[np.bool_] = (scanvals_las_off >= scan_bin) * (
                    scanvals_las_off < bins[idx + 1]
                )
                binned_on[:, idx] = np.nanmean(normed_xss_las_on[mask_on], axis=0)
                binned_off[:, idx] = np.nanmean(normed_xss_las_off[mask_off], axis=0)
            else:
                binned_on[:, idx] = np.nanmean(
                    normed_xss_las_on[(scanvals_las_on == scan_bin)], axis=0
                )
                binned_off[:, idx] = np.nanmean(
                    normed_xss_las_off[(scanvals_las_off == scan_bin)], axis=0
                )
        diff: np.ndarray[np.float64] = np.nan_to_num(binned_on) - np.nan_to_num(
            binned_off
        )
        return bins, diff, normed_xss_las_on

    def _calc_scan_binned_difference_xas(
        self,
    ) -> Tuple[
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
        Optional[np.ndarray[np.float64]],
    ]:
        """Calculate the binned difference absorption.

        Calculates the difference absorption for each bin of a scan variable.
        Final difference shape is 1D: (scan_bins)

        Returns None for all values if the final number of bins is small (<=2).

        Returns:
            bins (Optional[np.ndarray[np.float64]]): 1D array of scan bins used.

            diff (Optional[np.ndarray[np.float64]]): 1D difference absorption.

            laser_off (Optional[np.ndarray[np.float64]]): 1D laser on absorption.

            laser_off (Optional[np.ndarray[np.float64]]): 1D laser off absorption.
        """
        bins: np.ndarray[np.float64] = self._calc_scan_bins()
        if len(bins) <= 2:
            return None, None, None, None
        filter_las_on: np.ndarray = self._aggregate_filters()
        filter_las_off: np.ndarray = self._aggregate_filters(
            filter_vars="xray on, laser off, ipm, total scattering"
        )
        norm: np.ndarray[np.float64] = self._xray_intensity
        normed_xas: np.ndarray[np.float64] = self._xas_raw / norm
        normed_xas_las_on: np.ndarray[np.float64] = normed_xas[filter_las_on]
        normed_xas_las_off: np.ndarray[np.float64] = normed_xas[filter_las_off]

        scan_vals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
        scan_vals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]

        lxt_fast_scan: bool = (
            self._scan_var_name is not None and "lxt_fast" in self._scan_var_name
        )
        if lxt_fast_scan:
            binned_xas_las_on: np.ndarray[np.float64] = np.zeros(len(bins) - 1)
            binned_xas_las_off: np.ndarray[np.float64] = np.zeros(len(bins) - 1)
        else:
            binned_xas_las_on: np.ndarray[np.float64] = np.zeros(len(bins))
            binned_xas_las_off: np.ndarray[np.float64] = np.zeros(len(bins))

        for idx, bin_or_bin_edge in enumerate(bins):
            if lxt_fast_scan:
                if idx == len(bins) - 1:
                    continue
                mask_on: np.ndarray[np.float64] = (
                    scan_vals_las_on >= bin_or_bin_edge
                ) * (scan_vals_las_on < bins[idx + 1])
                mask_off: np.ndarray[np.float64] = (
                    scan_vals_las_off >= bin_or_bin_edge
                ) * (scan_vals_las_off < bins[idx + 1])
                binned_xas_las_on[idx] = np.mean(normed_xas_las_on[mask_on])
                binned_xas_las_off[idx] = np.mean(normed_xas_las_off[mask_off])
            else:
                binned_xas_las_on[idx] = np.mean(
                    normed_xas_las_on[scan_vals_las_on == bin_or_bin_edge]
                )
                binned_xas_las_off[idx] = np.mean(
                    normed_xas_las_off[scan_vals_las_off == bin_or_bin_edge]
                )

        diff: np.ndarray[np.float64] = binned_xas_las_on - binned_xas_las_off
        return bins, diff, binned_xas_las_on, binned_xas_las_off

    def _calc_scan_binned_difference_xes(
        self,
    ) -> Tuple[
        np.ndarray[np.float64],
        np.ndarray[np.float64],
        np.ndarray[np.float64],
        np.ndarray[np.float64],
    ]:
        """Calculate the binned difference emission.

        Calculates the difference emission for each bin of a scan variable.
        Final difference shape is 2D: (pixels, scan_bins) where the pixel
        axis is energy.

        Returns:
            bins (np.ndarray[np.float64]): 1D array of scan bins used.

            diff (np.ndarray[np.float64]): 2D difference emission.

            laser_off (np.ndarray[np.float64]): 2D laser on emission.

            laser_off (np.ndarray[np.float64]): 2D laser off emission.
        """
        filter_las_on: np.ndarray = self._aggregate_filters()
        filter_las_off: np.ndarray = self._aggregate_filters(
            filter_vars="xray on, laser off, ipm, total scattering"
        )
        norm: np.ndarray[np.float64] = self._xray_intensity
        normed_xes: np.ndarray[np.float64] = (self._xes.T / norm).T
        normed_xes_las_on: np.ndarray[np.float64] = normed_xes[filter_las_on]
        normed_xes_las_off: np.ndarray[np.float64] = normed_xes[filter_las_off]

        scan_vals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
        scan_vals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]
        bins: np.ndarray[np.float64] = self._calc_scan_bins()

        lxt_fast_scan: bool = (
            self._scan_var_name is not None and "lxt_fast" in self._scan_var_name
        )
        if lxt_fast_scan:
            binned_xes_las_on: np.ndarray[np.float64] = np.zeros(
                (normed_xes_las_on.shape[1], len(bins) - 1)
            )
            binned_xes_las_off: np.ndarray[np.float64] = np.zeros(
                (normed_xes_las_off.shape[1], len(bins) - 1)
            )
        else:
            binned_xes_las_on: np.ndarray[np.float64] = np.zeros(
                (normed_xes_las_on.shape[1], len(bins))
            )
            binned_xes_las_off: np.ndarray[np.float64] = np.zeros(
                (normed_xes_las_off.shape[1], len(bins))
            )

        for idx, bin_or_bin_edge in enumerate(bins):
            if lxt_fast_scan:
                if idx == len(bins) - 1:
                    continue
                mask_on: np.ndarray[np.float64] = (
                    scan_vals_las_on >= bin_or_bin_edge
                ) * (scan_vals_las_on < bins[idx + 1])
                mask_off: np.ndarray[np.float64] = (
                    scan_vals_las_off >= bin_or_bin_edge
                ) * (scan_vals_las_off < bins[idx + 1])
                binned_xes_las_on[:, idx] = np.mean(normed_xes_las_on[mask_on], axis=0)
                binned_xes_las_off[:, idx] = np.mean(
                    normed_xes_las_off[mask_off], axis=0
                )
            else:
                binned_xes_las_on[:, idx] = np.mean(
                    normed_xes_las_on[scan_vals_las_on == bin_or_bin_edge], axis=0
                )
                binned_xes_las_off[:, idx] = np.mean(
                    normed_xes_las_off[scan_vals_las_off == bin_or_bin_edge], axis=0
                )

        diff: np.ndarray[np.float64] = np.nan_to_num(binned_xes_las_on) - np.nan_to_num(
            binned_xes_las_off
        )
        return bins, diff, binned_xes_las_on, binned_xes_las_off

    # Plots
    ############################################################################

    # XSS
    def plot_avg_xss(
        self,
        laser_on: np.ndarray[np.float64],
        q_vals: np.ndarray[np.float64],
        phis: np.ndarray[np.float64],
    ) -> plt.Figure: ...

    def plot_difference_xss_hv(
        self,
        bins: np.ndarray[np.float64],
        q_vals: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
        scan_var_name: str,
    ) -> pn.GridSpec:
        """Plot the binned difference scattering.

        Args:
            bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            q_vals (np.ndarray[np.float64]): 1D set of Q bins.

            diff (np.ndarray[np.float64]): 2D difference signal of shape
                (q_bins, scan_bins).

            scan_var_name (str): Name of the scan variable (for titles, etc.).

        Returns:
            plot (pn.GridSpec): Plotted binned difference.
        """
        grid: pn.GridSpec = pn.GridSpec(name="Difference Profiles")
        xdim: hv.core.dimension.Dimension = hv.Dimension(
            ("scan_var", f"Scan Var {scan_var_name}")
        )
        ydim: hv.core.dimension.Dimension = hv.Dimension(("Q", "Q"))
        diff_img: hv.Image = hv.Image(
            (bins, q_vals, diff),
            kdims=[xdim, ydim],
        ).opts(shared_axes=False)
        contours = diff_img + hv.operation.contours(diff_img, levels=5)
        contours.opts(
            hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
        ).opts(shared_axes=False)
        grid[:2, :2] = contours
        xdim: hv.core.dimension.Dimension = hv.Dimension(("Q", f"Q"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(("dS", "dS"))
        diff_curves: hv.Overlay
        diff_curves = hv.Curve((q_vals, diff[:, 0]))
        for i, _ in enumerate(bins):
            if i == 0:
                continue
            else:
                diff_curves *= hv.Curve(
                    (
                        q_vals,
                        diff[:, i],
                    )
                ).opts(xlabel=xdim.label, ylabel=ydim.label)

        grid[2:4, :] = diff_curves.opts(shared_axes=False)
        return grid

    def plot_xss_overlap_fit(
        self,
        laser_on: np.ndarray[np.float64],
        bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> plt.Figure:
        """Plot the overlap fit to a slice of the binned difference.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                scattering profile.

            bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 2D difference signal of shape
                (q_bins, scan_bins).

        Returns:
            plot (plt.Figure): Plotted overlap fit.
        """
        fig, ax = plt.subplots(1, 1, figsize=(6, 3), dpi=200)
        if self._scan_var_name is not None and "lxt" in self._scan_var_name:
            raw_curve: np.ndarray[np.float64]
            trace: np.ndarray[np.float64]
            center: int
            fwhm: float
            raw_curve, trace, center, fwhm = self._convolution_fit(laser_on, bins, diff)
            msg: str = (
                f"Scan Var: {self._scan_var_name}\n"
                f"Overlap Position: {bins[center]}\n"
                f"FWHM: {fwhm}"
            )
            logger.info(msg)
            ax.plot(bins, raw_curve, label="Raw")
            ax2 = ax.twinx()
            ax2.plot(bins, trace, color="orange", label="Convolution")
            ax.set_title(msg)
            ax.set_xlabel(f"Scan Variable ({self._scan_var_name})")
            ax.set_ylabel(r"$\Delta$S")
            plt.legend(loc=0, frameon=False)
        else:
            raw_curve: np.ndarray[np.float64]
            opt: np.ndarray[np.float64]
            raw_curve, opt, _ = self._fit_overlap(laser_on, bins, diff)
            msg: str = (
                f"Scan Var: {self._scan_var_name}\n"
                f"Overlap Position: {opt[1]}\n"
                f"FWHM: {sigma_to_fwhm(opt[2])}"
            )
            logger.info(msg)
            ax.plot(bins, raw_curve)
            ax.plot(bins, gaussian(bins, *opt))
            ax.set_title(msg)
            ax.set_xlabel(f"Scan Variable ({self._scan_var_name})")
            ax.set_ylabel(r"$\Delta$S")
        fig.tight_layout()
        return fig

    def plot_all_xss(
        self,
        laser_on: np.ndarray[np.float64],
        bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
        scan_var_name: str,
    ) -> pn.Tabs:
        """Plot all relevant scattering plots.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                scattering profile.

            bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 2D difference signal of shape
                (q_bins, scan_bins).

            scan_var_name (str): Name of the scan variable (for titles, etc.).

        Returns:
            plot (pn.Tabs): All plots in separated tabs in a pn.Tabs object.
        """
        # avg_fig = self.plot_avg_xss()
        overlap_fig = self.plot_xss_overlap_fit(laser_on, bins, diff)

        # avg_grid = pn.GridSpec(name="TR X-ray Scattering")
        # avg_grid[:2, :2] = avg_fig

        diff_grid = self.plot_difference_xss_hv(bins, self._q_vals, diff, scan_var_name)
        overlap_grid = pn.GridSpec(name="Overlap Fit")
        overlap_grid[:2, :2] = overlap_fig

        tabbed_display = pn.Tabs(diff_grid)
        tabbed_display.append(overlap_grid)
        # tabbed_display.append(avg_grid)

        return tabbed_display

    # XAS
    def plot_all_xas(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        ccm_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Plot XAS and optionally EXAFS

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                absorption spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                absorption spectrum.

            ccm_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference absorption.

        Returns:
            plot (pn.Tabs): All plots in separated tabs in a pn.Tabs object.
        """
        std_xas_grid: pn.GridSpec = self.plot_std_xas_hv(
            laser_on, laser_off, ccm_bins, diff
        )
        tabs: pn.Tabs = pn.Tabs(std_xas_grid)
        if (
            hasattr(self._task_parameters, "analyze_exafs")
            and self._task_parameters.analyze_exafs
        ):
            ...
            # exafs_grid: pn.GridSpec = self.plot_exafs_hv()
            # tabs.append(exafs_grid)

        return tabs

    def plot_std_xas_hv(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        ccm_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.GridSpec:
        """Plot relevant XAS plots.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                absorption spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                absorption spectrum.

            ccm_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference absorption.

        Returns:
            plot (pn.GridSpec): Laser on/off and difference XAS plots.
        """
        xdim: hv.core.dimension.Dimension = hv.Dimension(("ccm_E", "Energy"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(("A", "A"))

        on_pts: hv.Points = hv.Points(
            (ccm_bins, laser_on), kdims=[xdim, ydim], label="Laser on"
        ).opts(size=5, color="green")
        on_curve: hv.Curve = hv.Curve((ccm_bins, laser_on), kdims=[xdim, ydim]).opts(
            color="green"
        )
        off_pts: hv.Points = hv.Points(
            (ccm_bins, laser_off), kdims=[xdim, ydim], label="Laser off"
        ).opts(size=5, color="orange")
        off_curve: hv.Curve = hv.Curve((ccm_bins, laser_off), kdims=[xdim, ydim]).opts(
            color="orange"
        )
        xas_plots = on_pts * on_curve * off_pts * off_curve

        ydim = hv.Dimension(("diff A", "dA/dE"))

        diff_pts: hv.Points = hv.Points((ccm_bins, diff), kdims=[xdim, ydim]).opts(
            size=5
        )
        diff_curve: hv.Curve = hv.Curve((ccm_bins, diff), kdims=[xdim, ydim])
        diff_plot: hv.Overlay = hv.Overlay([diff_pts, diff_curve])

        grid: pn.GridSpec = pn.GridSpec(name="XAS")
        grid[:2, :2] = xas_plots
        grid[2:4, :2] = diff_plot
        return grid

    def plot_xas_scan_hv(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> Optional[pn.Tabs]:
        """Plot scan binned XAS data.

        Currently handles lxe_opa power titration and t0 (lxt_fast) XAS scans.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                absorption spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                absorption spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference absorption.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        if self._scan_var_name is None:
            logger.error("Skipping scan plots - requested scan variables not found.")
            return None
        if "lxe_opa" in self._scan_var_name:
            return self.plot_xas_power_titration_scan(
                laser_on, laser_off, scan_bins, diff
            )
        elif "lxt_fast" in self._scan_var_name:
            return self.plot_xas_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)

    def plot_xas_lxt_fast_scan(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Produce a plot of an lxt_fast scan for time zero (or real signal).

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                absorption spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                absorption spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference absorption.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt_fast", "lxt_fast"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(
            ("Normalized A", "Normalized A")
        )

        bin_centers: np.ndarray[np.float64] = (scan_bins[:-1] + scan_bins[1:]) / 2

        on_pts: hv.Points = hv.Points(
            (bin_centers, laser_on), kdims=[xdim, ydim], label="Laser on"
        ).opts(size=5, color="blue")
        on_curve: hv.Curve = hv.Curve((bin_centers, laser_on), kdims=[xdim, ydim]).opts(
            color="blue"
        )
        off_pts: hv.Points = hv.Points(
            (bin_centers, laser_off), kdims=[xdim, ydim], label="Laser off"
        ).opts(size=5, color="orange")
        off_curve: hv.Curve = hv.Curve(
            (bin_centers, laser_off), kdims=[xdim, ydim]
        ).opts(color="orange")
        xas_plots: hv.Overlay = on_pts * on_curve * off_pts * off_curve

        ydim = hv.Dimension(("diff A", "diff A"))
        diff_pts: hv.Points = hv.Points(
            (bin_centers, diff),
            kdims=[xdim, ydim],
            label="Laser on - Laser off",
        ).opts(size=5, color="green")
        diff_curve: hv.Curve = hv.Curve((bin_centers, diff), kdims=[xdim, ydim]).opts(
            color="green"
        )
        diff_plot: hv.Overlay = diff_pts * diff_curve

        grid: pn.GridSpec = pn.GridSpec(name="lxt_fast T0 scan")
        grid[:2, :2] = xas_plots.opts(axiswise=True, shared_axes=False)
        grid[:2, 2:4] = diff_plot.opts(axiswise=True, shared_axes=False)
        tabs: pn.Tabs = pn.Tabs(grid)
        return tabs

    def plot_xas_power_titration_scan(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Produce a plot of the lxe_opa power titration.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                absorption spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                absorption spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference absorption.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        xdim: hv.core.dimension.Dimension = hv.Dimension(("lxe_opa", "lxe_opa"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(
            ("Normalized A", "Normalized A")
        )

        on_pts: hv.Points = hv.Points(
            (scan_bins, laser_on), kdims=[xdim, ydim], label="Laser on"
        ).opts(size=5, color="blue")
        on_curve: hv.Curve = hv.Curve((scan_bins, laser_on), kdims=[xdim, ydim]).opts(
            color="blue"
        )
        off_pts: hv.Points = hv.Points(
            (scan_bins, laser_off), kdims=[xdim, ydim], label="Laser off"
        ).opts(size=5, color="orange")
        off_curve: hv.Curve = hv.Curve((scan_bins, laser_off), kdims=[xdim, ydim]).opts(
            color="orange"
        )
        xas_plots: hv.Overlay = on_pts * on_curve * off_pts * off_curve

        ydim = hv.Dimension(("diff A", "diff A"))
        diff_pts: hv.Points = hv.Points(
            (scan_bins, diff),
            kdims=[xdim, ydim],
            label="Laser on - Laser off",
        ).opts(size=5, color="green")
        diff_curve: hv.Curve = hv.Curve((scan_bins, diff), kdims=[xdim, ydim]).opts(
            color="green"
        )
        diff_plot: hv.Overlay = diff_pts * diff_curve

        grid: pn.GridSpec = pn.GridSpec(name="Power Titration")
        grid[:2, :2] = xas_plots.opts(axiswise=True, shared_axes=False)
        grid[:2, 2:4] = diff_plot.opts(axiswise=True, shared_axes=False)
        tabs: pn.Tabs = pn.Tabs(grid)
        return tabs

    # XES
    def plot_xes_hv(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        energy_bins: Optional[np.ndarray[np.float64]],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Plot XES and difference XES. In the future will provide other plots.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                emission spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                emission spectrum.

            energy_bins (Optional[np.ndarray[np.float64]]): 1D set of bins used
                for the energy axis. If None, will just use pixels for that axis.

            diff (np.ndarray[np.float64]): 1D difference emission.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """

        std_xes_grid: pn.GridSpec = self.plot_std_xes_hv(
            laser_on, laser_off, energy_bins, diff
        )
        tabs: pn.Tabs = pn.Tabs(std_xes_grid)

        return tabs

    def plot_std_xes_hv(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        energy_bins: Optional[np.ndarray[np.float64]],
        diff: np.ndarray[np.float64],
    ) -> pn.GridSpec:
        """Plot XES and difference XES.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                emission spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                emission spectrum.

            energy_bins (Optional[np.ndarray[np.float64]]): 1D set of bins used
                for the energy axis. If None, will just use pixels for that axis.

            diff (np.ndarray[np.float64]): 1D difference emission.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        xdim: hv.core.dimension.Dimension = hv.Dimension(("Energy", "Energy"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(("I", "I"))

        bins: np.ndarray[Union[np.int64, np.float64]]
        if energy_bins is None:
            bins = np.arange(len(laser_on))
        else:
            # May be float, above is int
            bins = energy_bins

        on_pts: hv.Points = hv.Points(
            (bins, laser_on), kdims=[xdim, ydim], label="Laser on"
        ).opts(size=5, color="green")
        on_curve: hv.Curve = hv.Curve((bins, laser_on), kdims=[xdim, ydim]).opts(
            color="green"
        )
        off_pts: hv.Points = hv.Points(
            (bins, laser_off), kdims=[xdim, ydim], label="Laser off"
        ).opts(size=5, color="orange")
        off_curve: hv.Curve = hv.Curve((bins, laser_off), kdims=[xdim, ydim]).opts(
            color="orange"
        )
        xes_plots = on_pts * on_curve * off_pts * off_curve

        ydim = hv.Dimension(("diff I", "dI"))

        diff_pts: hv.Points = hv.Points((bins, diff), kdims=[xdim, ydim]).opts(size=5)
        diff_curve: hv.Curve = hv.Curve((bins, diff), kdims=[xdim, ydim])
        diff_plot: hv.Overlay = hv.Overlay([diff_pts, diff_curve])

        grid: pn.GridSpec = pn.GridSpec(name="XES")
        grid[:2, :2] = xes_plots
        grid[2:4, :2] = diff_plot
        return grid

    def plot_xes_scan_hv(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> Optional[pn.Tabs]:
        """Plot scan binned XES data.

        Currently handles lxt and lxt_fast XES scans.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                emission spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                emission spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference emission.

        Returns:
            plot (Optional[pn.Tabs]): Plotted binned difference. Returns None if
                the scan variable is unknown/unrecognized.
        """
        if self._scan_var_name is None:
            logger.info("Skipping scan plots - requested scan variables not found.")
            return None
        if "lxt_fast" in self._scan_var_name:
            return self.plot_xes_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)
        elif "lxt" in self._scan_var_name:
            return self.plot_xes_lxt_scan(laser_on, laser_off, scan_bins, diff)

    def plot_xes_lxt_fast_scan(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Plot lxt_fast scan binned XES data.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                emission spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                emission spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference emission.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        grid: pn.GridSpec = pn.GridSpec(name="Difference XES")
        xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt_fast", "lxt_fast"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(
            ("Energy (Pixel)", "Energy (Pixel)")
        )

        bin_centers: np.ndarray[np.float_] = (scan_bins[:1] + scan_bins[1:]) / 2
        diff_img: hv.Image = hv.Image(
            (
                bin_centers,
                np.linspace(0, len(laser_on[:, 0]) - 1, len(laser_on[:, 0])),
                diff,
            ),
            kdims=[xdim, ydim],
        ).opts(shared_axes=False)
        contours: hv.Contours = hv.operation.contours(diff_img, levels=5)
        contours.opts(
            hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
        )
        shared: hv.Overlay = diff_img + contours
        shared.opts(shared_axes=False)
        grid[:2, :2] = shared

        xdim: hv.core.dimension.Dimension = hv.Dimension(
            ("Energy (Pixel)", "Energy (Pixel)")
        )
        ydim: hv.core.dimension.Dimension = hv.Dimension(("dI", "dI"))

        diff_curves: hv.Curve = hv.Curve((range(len(diff[:, 0])), diff[:, 0]))
        for idx, _ in enumerate(bin_centers):
            if idx == 0:
                continue
            else:
                diff_curves *= hv.Curve((range(len(diff[:, 0])), diff[:, idx])).opts(
                    xlabel=xdim.label, ylabel=ydim.label
                )
        grid[2:4, :] = diff_curves.opts(shared_axes=False)
        return pn.Tabs(grid)

    def plot_xes_lxt_scan(
        self,
        laser_on: np.ndarray[np.float64],
        laser_off: np.ndarray[np.float64],
        scan_bins: np.ndarray[np.float64],
        diff: np.ndarray[np.float64],
    ) -> pn.Tabs:
        """Plot lxt scan binned XES data.

        Args:
            laser_on (np.ndarray[np.float64]): 1D corrected average laser on
                emission spectrum.

            laser_off (np.ndarray[np.float64]): 1D corrected average laser off
                emission spectrum.

            scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
                signal.

            diff (np.ndarray[np.float64]): 1D difference emission.

        Returns:
            plot (pn.Tabs): Plotted binned difference.
        """
        grid: pn.GridSpec = pn.GridSpec(name="Difference XES")
        xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt", "lxt"))
        ydim: hv.core.dimension.Dimension = hv.Dimension(
            ("Energy (Pixel)", "Energy (Pixel)")
        )

        diff_img: hv.Image = hv.Image(
            (
                scan_bins,
                np.linspace(0, len(laser_on[:, 0]) - 1, len(laser_on[:, 0])),
                diff,
            ),
            kdims=[xdim, ydim],
        ).opts(shared_axes=False)
        contours: hv.Contours = hv.operation.contours(diff_img, levels=5)
        contours.opts(
            hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
        )
        shared: hv.Overlay = diff_img + contours
        shared.opts(shared_axes=False)
        grid[:2, :2] = shared

        xdim: hv.core.dimension.Dimension = hv.Dimension(
            ("Energy (Pixel)", "Energy (Pixel)")
        )
        ydim: hv.core.dimension.Dimension = hv.Dimension(("dI", "dI"))

        diff_curves: hv.Curve = hv.Curve((range(len(diff[:, 0])), diff[:, 0]))
        for idx, _ in enumerate(scan_bins):
            if idx == 0:
                continue
            else:
                diff_curves *= hv.Curve((range(len(diff[:, 0])), diff[:, idx])).opts(
                    xlabel=xdim.label, ylabel=ydim.label
                )
        grid[2:4, :] = diff_curves.opts(shared_axes=False)
        return pn.Tabs(grid)

_aggregate_filters(filter_vars='xray on, laser on, total scattering, ipm')

Combine a number of possible data filters.

Takes a string of filters to be applied in the order specified. The order matters for some filters, e.g. if "percentage" is selected it should be applied after total scattering. See below for a list of filters.

Possible filters

"xray on": Take shots where X-rays are on, "xray off": Take shots where X-rays are off, "laser on": Take shots where laser is on, "laser off": Take shots where laser is off, "ipm": Take shots with X-ray intensity above a value (ipm value), "total scattering": Take shots with minimum integrated scattering, "percentage": Extract this percentage of data centered on the max scattering intensity. Should be applied after total scatteirng. E.g. Include 50% of shots centered around the Q-value with maximum scattering.

Parameters:

Name Type Description Default
filter_vars str

A string of comma-seperated filters to apply, taken from the list above. E.g. "xray on, laser on".

'xray on, laser on, total scattering, ipm'

Returns:

Name Type Description
total_filter ndarray[bool]

A 1D boolean array with a shape of (num_events) which can be used to index and filter a data array.

Source code in lute/tasks/_smalldata.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def _aggregate_filters(
    self, filter_vars: str = ("xray on, laser on, total scattering, ipm")
) -> np.ndarray[np.bool_]:
    """Combine a number of possible data filters.

    Takes a string of filters to be applied in the order specified. The
    order matters for some filters, e.g. if "percentage" is selected it
    should be applied after total scattering. See below for a list of
    filters.

    Possible filters:
        "xray on": Take shots where X-rays are on,
        "xray off": Take shots where X-rays are off,
        "laser on": Take shots where laser is on,
        "laser off": Take shots where laser is off,
        "ipm": Take shots with X-ray intensity above a value (ipm value),
        "total scattering": Take shots with minimum integrated scattering,
        "percentage": Extract this percentage of data centered on the max
            scattering intensity. Should be applied after total scatteirng.
            E.g. Include 50% of shots centered around the Q-value with
            maximum scattering.

    Args:
        filter_vars (str): A string of comma-seperated filters to apply,
            taken from the list above. E.g. "xray on, laser on".

    Returns:
        total_filter (np.ndarray[np.bool]): A 1D boolean array with a shape
            of (num_events) which can be used to index and filter a data array.
    """
    filters: List[str] = [f.strip() for f in filter_vars.split(",")]
    total_filter: np.ndarray = np.ones([self._num_events], dtype=bool)

    for data_filter in filters:
        try:
            total_filter &= self._filter_dict[data_filter]
        except KeyError as e:
            logger.debug(
                f"Unrecognized filter requested: {data_filter}. "
                "Ignoring and continuing processing."
            )
            continue

    return total_filter

_calc_1d_water_norm()

Calculate normalization factors by integrating the water ring.

https://www.osti.gov/servlets/purl/1760438 says to use 1.5-3.5 A-1

Source code in lute/tasks/_smalldata.py
285
286
287
288
289
290
291
292
293
294
295
296
297
def _calc_1d_water_norm(self) -> np.ndarray[np.float64]:
    """Calculate normalization factors by integrating the water ring.

    https://www.osti.gov/servlets/purl/1760438 says to use 1.5-3.5 A-1
    """
    # _ = self.find_solvent_argmax(self.scattering_laser_on_mean)
    # min_q_idx: int = self._solvent_peak_idx - 10
    # max_q_idx: int = self._solvent_peak_idx + 1
    # return np.nanmean(
    #    self.calc_norm_by_qrange((self.q_vals[min_q_idx], self.q_vals[max_q_idx])),
    #    axis=-1,
    # )
    return np.nanmean(self._calc_norm_by_qrange((1.5, 3.5)), axis=-1)

_calc_avg_difference_xes()

Calculate the average difference XES.

Calculates the 1D difference emission spectra in pixels. Final difference shape is 1D: (pixels). Also returns the laser on/off profiles. The number of pixels is determined by the projection axis after image rotation if that is requested (see _extract_xes).

Returns:

Name Type Description
diff ndarray[float64]

1D binned difference emission of shape (pixels)

laser_on ndarray[float64]

1D laser on emission profiles of shape (pixels)

laser_off ndarray[float64]

1D laser off emission profiles of shape (pixels)

Source code in lute/tasks/_smalldata.py
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def _calc_avg_difference_xes(
    self,
) -> Tuple[
    np.ndarray[np.float64],
    np.ndarray[np.float64],
    np.ndarray[np.float64],
]:
    """Calculate the average difference XES.

    Calculates the 1D difference emission spectra in pixels.
    Final difference shape is 1D: (pixels). Also returns the laser on/off
    profiles. The number of pixels is determined by the projection axis after
    image rotation if that is requested (see _extract_xes).

    Returns:
        diff (np.ndarray[np.float64]): 1D binned difference emission of shape
            (pixels)

        laser_on (np.ndarray[np.float64]): 1D laser on emission profiles
            of shape (pixels)

        laser_off (np.ndarray[np.float64]): 1D laser off emission profiles
            of shape (pixels)
    """

    filter_las_on: np.ndarray[np.float64] = self._aggregate_filters()
    filter_las_off: np.ndarray[np.float64] = self._aggregate_filters(
        filter_vars="xray on, laser off, ipm, total scattering"
    )

    xes_on: np.ndarray[np.float64] = np.nanmean(self._xes[filter_las_on], axis=0)
    xes_off: np.ndarray[np.float64] = np.nanmean(self._xes[filter_las_off], axis=0)

    diff: np.ndarray[np.float64] = xes_on - xes_off

    return diff, xes_on, xes_off

_calc_binned_difference_xas()

Calculate the binned difference absorption.

Calculates the 1D difference absorption for a set of CCM bins. Final difference shape is 1D: (ccm_bins). Also returns bins and the laser on/off profiles.

Returns None for all values if the final number of CCM bins is small (<=2).

Returns:

Name Type Description
bins Optional[ndarray[float64]]

1D array of ccm bins used.

diff Optional[ndarray[float64]]

1D binned difference absorption of shape (ccm_bins)

laser_on Optional[ndarray[float64]]

1D laser on absorption profiles of shape (ccm_bins)

laser_off Optional[ndarray[float64]]

1D laser off absorption profiles of shape (ccm_bins)

Source code in lute/tasks/_smalldata.py
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def _calc_binned_difference_xas(
    self,
) -> Tuple[
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
]:
    """Calculate the binned difference absorption.

    Calculates the 1D difference absorption for a set of CCM bins.
    Final difference shape is 1D: (ccm_bins). Also returns bins and
    the laser on/off profiles.

    Returns None for all values if the final number of CCM bins is small (<=2).

    Returns:
        bins (Optional[np.ndarray[np.float64]]): 1D array of ccm bins used.

        diff (Optional[np.ndarray[np.float64]]): 1D binned difference absorption
            of shape (ccm_bins)

        laser_on (Optional[np.ndarray[np.float64]]): 1D laser on absorption
            profiles of shape (ccm_bins)

        laser_off (Optional[np.ndarray[np.float64]]): 1D laser off absorption
            profiles of shape (ccm_bins)
    """
    nbins: int
    b_edges: np.ndarray[np.float64]
    if self._ccm_E_set_pt is not None:
        # nbins = len(self.ccm_E_set_pt)
        nbins, b_edges = self._calc_ccm_bins_by_set_pt()
    else:
        nbins, b_edges = self._calc_ccm_bins_by_unique()

    if nbins <= 2:
        return None, None, None, None

    filter_las_on: np.ndarray = self._aggregate_filters()
    filter_las_off: np.ndarray = self._aggregate_filters(
        filter_vars="xray on, laser off, ipm, total scattering"
    )
    norm: np.ndarray[np.float64] = self._calc_1d_water_norm()
    if (norm < 0).any():
        norm = self._xray_intensity
    xas_norm: np.ndarray[np.float64] = self._xas_raw / norm

    xas_laser_on: np.ndarray = np.zeros(nbins)
    xas_laser_off: np.ndarray = np.zeros(nbins)
    # bins are [lower, upper) except for last which is [lower, upper]
    # _, b_edges = np.histogram(self.ccm_E_unique, bins=nbins)
    bins: np.ndarray = np.zeros([nbins])
    i: int = 0
    while i < nbins:  # - win_size + 1
        win = b_edges[i : i + 2]
        bins[i] = win.mean()
        i += 1

    for i in range(nbins):
        lower: int = b_edges[i]
        upper: int = b_edges[i + 1]
        # Prepare CCM_E bin
        energy_filt: np.ndarray
        if i == nbins - 1:
            # upper edge inclusive bin
            energy_filt = self._ccm_E <= upper
        else:
            energy_filt = self._ccm_E < upper
        energy_filt &= self._ccm_E >= lower
        full_filt_on = filter_las_on & energy_filt
        full_filt_off = filter_las_off & energy_filt
        xas_laser_on[i] = np.nanmean(xas_norm[full_filt_on])
        xas_laser_off[i] = np.nanmean(xas_norm[full_filt_off])

    return (
        bins,
        np.nan_to_num(xas_laser_on - xas_laser_off),
        np.nan_to_num(xas_laser_on),
        np.nan_to_num(xas_laser_off),
    )

_calc_ccm_bins_by_set_pt()

Caculate bin edges based on the provided CCM_E set points.

Returns:

Name Type Description
bins ndarray[float64]

1D array of ccm bins used.

Source code in lute/tasks/_smalldata.py
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
def _calc_ccm_bins_by_set_pt(self) -> np.ndarray[np.float64]:
    """Caculate bin edges based on the provided CCM_E set points.

    Returns:
        bins (np.ndarray[np.float64]): 1D array of ccm bins used.
    """
    if self._ccm_E_set_pt is not None:
        all_set_pts: np.ndarray[np.float64] = np.zeros(
            np.sum(self._events_per_rank), dtype=np.float64
        )
        self._mpi_comm.Allgatherv(
            self._ccm_E_set_pt,
            [
                all_set_pts,
                self._events_per_rank,
                self._start_indices_per_rank,
                MPI.DOUBLE,
            ],
        )
        bin_centers: np.ndarray[np.float64] = np.sort(np.unique(all_set_pts))
        nbins: int = len(bin_centers)
    else:
        raise RuntimeError("Set points not provided/not found!")

    edges: np.ndarray[np.float64] = np.empty(nbins + 1)
    edges[1:-1] = (bin_centers[1:] + bin_centers[:-1]) / 2
    # How to handle the ends?
    # Lower bin inclusive, upper not (except last)
    edges[0] = np.min(bin_centers)
    edges[-1] = np.max(bin_centers)

    return nbins, edges

_calc_ccm_bins_by_unique(nbins=50)

Calculate bin edges based on unique CCM_E recorded values.

Parameters:

Name Type Description Default
nbins int

Number of bins to create. 50-100 is empirically useful.

50

Returns:

Name Type Description
nbins int

Number of bins.

b_edges ndarray[float64]

Bin edges.

Source code in lute/tasks/_smalldata.py
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
def _calc_ccm_bins_by_unique(
    self, nbins: int = 50
) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64]]:
    """Calculate bin edges based on unique CCM_E recorded values.

    Args:
        nbins (int): Number of bins to create. 50-100 is empirically useful.

    Returns:
        nbins (int): Number of bins.

        b_edges (np.ndarray[np.float64]): Bin edges.
    """
    all_ccm_values: np.ndarray[np.float64] = np.zeros(
        np.sum(self._events_per_rank), dtype=np.float64
    )
    self._mpi_comm.Allgatherv(
        self._ccm_E,
        [
            all_ccm_values,
            self._events_per_rank,
            self._start_indices_per_rank,
            MPI.DOUBLE,
        ],
    )
    unique: np.ndarray[np.float64] = np.unique(all_ccm_values)
    del all_ccm_values
    nbins = np.min([nbins, len(unique)])
    b_edges = np.histogram_bin_edges(unique, bins=nbins)
    return nbins, b_edges

_calc_norm_by_max()

Calculate a normalization factor by taking the maximum of each profile.

Returns: norm (np.ndarray[np.float64]): The 1D norm with shape (num_events)

Source code in lute/tasks/_smalldata.py
277
278
279
280
281
282
283
def _calc_norm_by_max(self) -> np.ndarray[np.float64]:
    """Calculate a normalization factor by taking the maximum of each profile.

    Returns:
    norm (np.ndarray[np.float64]): The 1D norm with shape (num_events)
    """
    return np.nanmax(self._az_int, axis=(1, 2))

_calc_norm_by_qrange(q_limits=(0.9, 3.5))

Calculate a normalization factor by averaging over a range of Q values.

Parameters:

Name Type Description Default
q_limits Tuple[float, float]

The lower and upper limit of the Q-range to average.

(0.9, 3.5)

Returns:

Name Type Description
norm ndarray[float64]

The 2D norm with shape (num_events, num_phi)

Source code in lute/tasks/_smalldata.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def _calc_norm_by_qrange(
    self, q_limits: Tuple[float, float] = (0.9, 3.5)
) -> np.ndarray[np.float64]:
    """Calculate a normalization factor by averaging over a range of Q values.

    Args:
        q_limits (Tuple[float, float]): The lower and upper limit of the
            Q-range to average.

    Returns:
        norm (np.ndarray[np.float64]): The 2D norm with shape
            (num_events, num_phi)
    """
    norm_range: np.array = self._q_vals > q_limits[0]
    norm_range &= self._q_vals < q_limits[1]
    return np.nanmean(self._az_int[..., norm_range], axis=-1)

_calc_scan_binned_difference_xas()

Calculate the binned difference absorption.

Calculates the difference absorption for each bin of a scan variable. Final difference shape is 1D: (scan_bins)

Returns None for all values if the final number of bins is small (<=2).

Returns:

Name Type Description
bins Optional[ndarray[float64]]

1D array of scan bins used.

diff Optional[ndarray[float64]]

1D difference absorption.

laser_off Optional[ndarray[float64]]

1D laser on absorption.

laser_off Optional[ndarray[float64]]

1D laser off absorption.

Source code in lute/tasks/_smalldata.py
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
def _calc_scan_binned_difference_xas(
    self,
) -> Tuple[
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
    Optional[np.ndarray[np.float64]],
]:
    """Calculate the binned difference absorption.

    Calculates the difference absorption for each bin of a scan variable.
    Final difference shape is 1D: (scan_bins)

    Returns None for all values if the final number of bins is small (<=2).

    Returns:
        bins (Optional[np.ndarray[np.float64]]): 1D array of scan bins used.

        diff (Optional[np.ndarray[np.float64]]): 1D difference absorption.

        laser_off (Optional[np.ndarray[np.float64]]): 1D laser on absorption.

        laser_off (Optional[np.ndarray[np.float64]]): 1D laser off absorption.
    """
    bins: np.ndarray[np.float64] = self._calc_scan_bins()
    if len(bins) <= 2:
        return None, None, None, None
    filter_las_on: np.ndarray = self._aggregate_filters()
    filter_las_off: np.ndarray = self._aggregate_filters(
        filter_vars="xray on, laser off, ipm, total scattering"
    )
    norm: np.ndarray[np.float64] = self._xray_intensity
    normed_xas: np.ndarray[np.float64] = self._xas_raw / norm
    normed_xas_las_on: np.ndarray[np.float64] = normed_xas[filter_las_on]
    normed_xas_las_off: np.ndarray[np.float64] = normed_xas[filter_las_off]

    scan_vals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
    scan_vals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]

    lxt_fast_scan: bool = (
        self._scan_var_name is not None and "lxt_fast" in self._scan_var_name
    )
    if lxt_fast_scan:
        binned_xas_las_on: np.ndarray[np.float64] = np.zeros(len(bins) - 1)
        binned_xas_las_off: np.ndarray[np.float64] = np.zeros(len(bins) - 1)
    else:
        binned_xas_las_on: np.ndarray[np.float64] = np.zeros(len(bins))
        binned_xas_las_off: np.ndarray[np.float64] = np.zeros(len(bins))

    for idx, bin_or_bin_edge in enumerate(bins):
        if lxt_fast_scan:
            if idx == len(bins) - 1:
                continue
            mask_on: np.ndarray[np.float64] = (
                scan_vals_las_on >= bin_or_bin_edge
            ) * (scan_vals_las_on < bins[idx + 1])
            mask_off: np.ndarray[np.float64] = (
                scan_vals_las_off >= bin_or_bin_edge
            ) * (scan_vals_las_off < bins[idx + 1])
            binned_xas_las_on[idx] = np.mean(normed_xas_las_on[mask_on])
            binned_xas_las_off[idx] = np.mean(normed_xas_las_off[mask_off])
        else:
            binned_xas_las_on[idx] = np.mean(
                normed_xas_las_on[scan_vals_las_on == bin_or_bin_edge]
            )
            binned_xas_las_off[idx] = np.mean(
                normed_xas_las_off[scan_vals_las_off == bin_or_bin_edge]
            )

    diff: np.ndarray[np.float64] = binned_xas_las_on - binned_xas_las_off
    return bins, diff, binned_xas_las_on, binned_xas_las_off

_calc_scan_binned_difference_xes()

Calculate the binned difference emission.

Calculates the difference emission for each bin of a scan variable. Final difference shape is 2D: (pixels, scan_bins) where the pixel axis is energy.

Returns:

Name Type Description
bins ndarray[float64]

1D array of scan bins used.

diff ndarray[float64]

2D difference emission.

laser_off ndarray[float64]

2D laser on emission.

laser_off ndarray[float64]

2D laser off emission.

Source code in lute/tasks/_smalldata.py
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def _calc_scan_binned_difference_xes(
    self,
) -> Tuple[
    np.ndarray[np.float64],
    np.ndarray[np.float64],
    np.ndarray[np.float64],
    np.ndarray[np.float64],
]:
    """Calculate the binned difference emission.

    Calculates the difference emission for each bin of a scan variable.
    Final difference shape is 2D: (pixels, scan_bins) where the pixel
    axis is energy.

    Returns:
        bins (np.ndarray[np.float64]): 1D array of scan bins used.

        diff (np.ndarray[np.float64]): 2D difference emission.

        laser_off (np.ndarray[np.float64]): 2D laser on emission.

        laser_off (np.ndarray[np.float64]): 2D laser off emission.
    """
    filter_las_on: np.ndarray = self._aggregate_filters()
    filter_las_off: np.ndarray = self._aggregate_filters(
        filter_vars="xray on, laser off, ipm, total scattering"
    )
    norm: np.ndarray[np.float64] = self._xray_intensity
    normed_xes: np.ndarray[np.float64] = (self._xes.T / norm).T
    normed_xes_las_on: np.ndarray[np.float64] = normed_xes[filter_las_on]
    normed_xes_las_off: np.ndarray[np.float64] = normed_xes[filter_las_off]

    scan_vals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
    scan_vals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]
    bins: np.ndarray[np.float64] = self._calc_scan_bins()

    lxt_fast_scan: bool = (
        self._scan_var_name is not None and "lxt_fast" in self._scan_var_name
    )
    if lxt_fast_scan:
        binned_xes_las_on: np.ndarray[np.float64] = np.zeros(
            (normed_xes_las_on.shape[1], len(bins) - 1)
        )
        binned_xes_las_off: np.ndarray[np.float64] = np.zeros(
            (normed_xes_las_off.shape[1], len(bins) - 1)
        )
    else:
        binned_xes_las_on: np.ndarray[np.float64] = np.zeros(
            (normed_xes_las_on.shape[1], len(bins))
        )
        binned_xes_las_off: np.ndarray[np.float64] = np.zeros(
            (normed_xes_las_off.shape[1], len(bins))
        )

    for idx, bin_or_bin_edge in enumerate(bins):
        if lxt_fast_scan:
            if idx == len(bins) - 1:
                continue
            mask_on: np.ndarray[np.float64] = (
                scan_vals_las_on >= bin_or_bin_edge
            ) * (scan_vals_las_on < bins[idx + 1])
            mask_off: np.ndarray[np.float64] = (
                scan_vals_las_off >= bin_or_bin_edge
            ) * (scan_vals_las_off < bins[idx + 1])
            binned_xes_las_on[:, idx] = np.mean(normed_xes_las_on[mask_on], axis=0)
            binned_xes_las_off[:, idx] = np.mean(
                normed_xes_las_off[mask_off], axis=0
            )
        else:
            binned_xes_las_on[:, idx] = np.mean(
                normed_xes_las_on[scan_vals_las_on == bin_or_bin_edge], axis=0
            )
            binned_xes_las_off[:, idx] = np.mean(
                normed_xes_las_off[scan_vals_las_off == bin_or_bin_edge], axis=0
            )

    diff: np.ndarray[np.float64] = np.nan_to_num(binned_xes_las_on) - np.nan_to_num(
        binned_xes_las_off
    )
    return bins, diff, binned_xes_las_on, binned_xes_las_off

_calc_scan_binned_difference_xss()

Calculate the binned difference scattering.

Calculates the 1D difference scattering for each bin of a scan variable. Final difference shape is 2D: (q_bins, scan_bins). Also returns bins and the laser on profiles.

Returns:

Name Type Description
bins ndarray[float64]

1D array of scan bins used.

diff ndarray[float64]

2D binned difference scattering of shape (q_bins, scan_bins)

laser_on ndarray[float64]

2D laser on scattering profiles of shape (n_events_las_on, q_bins)

Source code in lute/tasks/_smalldata.py
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
def _calc_scan_binned_difference_xss(
    self,
) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]:
    """Calculate the binned difference scattering.

    Calculates the 1D difference scattering for each bin of a scan variable.
    Final difference shape is 2D: (q_bins, scan_bins). Also returns bins and
    the laser on profiles.

    Returns:
        bins (np.ndarray[np.float64]): 1D array of scan bins used.

        diff (np.ndarray[np.float64]): 2D binned difference scattering of shape
            (q_bins, scan_bins)

        laser_on (np.ndarray[np.float64]): 2D laser on scattering profiles
            of shape (n_events_las_on, q_bins)
    """
    profiles: np.ndarray[np.float64, np.float64] = np.nansum(self._az_int, axis=1)
    dark_mean: np.ndarray[np.float64] = self._calc_xss_dark_mean(profiles)
    if len(np.unique(dark_mean)) > 1:
        # Can be len == 1 if all nan
        profiles -= dark_mean
    norm: np.ndarray[np.float64] = self._calc_norm_by_qrange()
    profiles = (profiles.T / np.nanmean(norm, axis=-1).T).T
    del dark_mean
    del norm

    filter_las_on: np.ndarray[np.float64] = self._aggregate_filters()
    filter_las_off: np.ndarray[np.float64] = self._aggregate_filters(
        filter_vars="xray on, laser off, ipm, total scattering"
    )
    normed_xss_las_on: np.ndarray[np.float64] = profiles[filter_las_on]
    normed_xss_las_off: np.ndarray[np.float64] = profiles[filter_las_off]

    bins: np.ndarray[np.float64] = self._calc_scan_bins()
    binned_on: np.ndarray[np.float64] = np.zeros((len(self._q_vals), len(bins)))
    binned_off: np.ndarray[np.float64] = np.zeros((len(self._q_vals), len(bins)))
    scanvals_las_on: np.ndarray[np.float64] = self._scan_values[filter_las_on]
    scanvals_las_off: np.ndarray[np.float64] = self._scan_values[filter_las_off]

    idx: int
    scan_bin: float
    for idx, scan_bin in enumerate(bins):
        if self._scan_var_name is not None and "lxt_fast" in self._scan_var_name:
            if idx == len(bins) - 1:
                continue
            mask_on: np.ndarray[np.bool_] = (scanvals_las_on >= scan_bin) * (
                scanvals_las_on < bins[idx + 1]
            )
            mask_off: np.ndarray[np.bool_] = (scanvals_las_off >= scan_bin) * (
                scanvals_las_off < bins[idx + 1]
            )
            binned_on[:, idx] = np.nanmean(normed_xss_las_on[mask_on], axis=0)
            binned_off[:, idx] = np.nanmean(normed_xss_las_off[mask_off], axis=0)
        else:
            binned_on[:, idx] = np.nanmean(
                normed_xss_las_on[(scanvals_las_on == scan_bin)], axis=0
            )
            binned_off[:, idx] = np.nanmean(
                normed_xss_las_off[(scanvals_las_off == scan_bin)], axis=0
            )
    diff: np.ndarray[np.float64] = np.nan_to_num(binned_on) - np.nan_to_num(
        binned_off
    )
    return bins, diff, normed_xss_las_on

_calc_scan_bins(nbins=51)

Calculate a set of scan bins.

Parameters:

Name Type Description Default
nbins int

Number of bins to create.

51

Returns:

Name Type Description
scan_bins ndarray[float64]

1D set of scan bins.

Source code in lute/tasks/_smalldata.py
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
def _calc_scan_bins(self, nbins: int = 51) -> np.ndarray[np.float64]:
    """Calculate a set of scan bins.

    Args:
        nbins (int): Number of bins to create.

    Returns:
        scan_bins (np.ndarray[np.float64]): 1D set of scan bins.
    """
    # Create a full set of scan values
    all_scan_values: np.ndarray[np.float64] = np.zeros(
        np.sum(self._events_per_rank), dtype=np.float64
    )
    self._mpi_comm.Allgatherv(
        self._scan_values,
        [
            all_scan_values,
            self._events_per_rank,
            self._start_indices_per_rank,
            MPI.DOUBLE,
        ],
    )
    all_scan_values = np.nan_to_num(all_scan_values)
    scan_bins: np.ndarray[np.float64]
    if self._scan_var_name is not None and "lxt_fast" in self._scan_var_name:
        scan_bins = np.histogram_bin_edges(np.unique(all_scan_values), bins=nbins)
    elif self._scan_var_name is not None:
        scan_bins = np.unique(all_scan_values)
    else:
        scan_bins = np.ones([1])
    return scan_bins

_calc_xss_dark_mean(profiles)

Calculate the dark (X-ray off) mean of a set of XSS profiles.

Parameters:

Name Type Description Default
profiles ndarray[float64]

Set of profiles to calculate the dark mean from. Shape: (n_events, q_bins)

required

Returns: dark_mean (np.ndarray[np.float64]): The calculated dark mean. Shape: (q_bins)

Source code in lute/tasks/_smalldata.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def _calc_xss_dark_mean(
    self, profiles: np.ndarray[np.float64]
) -> np.ndarray[np.float64]:
    """Calculate the dark (X-ray off) mean of a set of XSS profiles.

    Args:
        profiles (np.ndarray[np.float64]): Set of profiles to calculate the
            dark mean from. Shape: (n_events, q_bins)
    Returns:
        dark_mean (np.ndarray[np.float64]): The calculated dark mean.
            Shape: (q_bins)
    """
    dark_mean: np.ndarray[np.float64]
    try:
        dark_mean = np.nanmean(profiles[self._filter_dict["xray off"]], axis=0)
        dark_mean = self._mpi_comm.allreduce(dark_mean, op=MPI.SUM)
        dark_mean /= self._mpi_size
    except KeyError:
        logger.debug(
            "No X-ray off event information for filtering. "
            "Dark mean will be all zeros."
        )
        dark_mean = np.zeros([self._num_events])
    return dark_mean

_convolution_fit(laser_on, bins, diff)

Fits a time scan through convolution with Heaviside kernel.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on scattering profile.

required
bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

2D difference signal of shape (q_bins, scan_bins).

required

Returns:

Name Type Description
raw_curve ndarray[float64]

1D difference slice at a specific Q value used for calculating the overlap.

trace ndarray[float64]

1D convolution trace.

center int

The index of the center from the convolution.

fwhm float

Width of the convlution signal (fwhm).

Source code in lute/tasks/_smalldata.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
def _convolution_fit(
    self,
    laser_on: np.ndarray[np.float64],
    bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], int, float]:
    """Fits a time scan through convolution with Heaviside kernel.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            scattering profile.

        bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 2D difference signal of shape
            (q_bins, scan_bins).

    Returns:
        raw_curve (np.ndarray[np.float64]): 1D difference slice at a specific
            Q value used for calculating the overlap.

        trace (np.ndarray[np.float64]): 1D convolution trace.

        center (int): The index of the center from the convolution.

        fwhm (float): Width of the convlution signal (fwhm).
    """
    from scipy.signal import fftconvolve

    results: List[Tuple] = []
    max_pt: int = self._find_solvent_argmax(laser_on)
    raw_curve: np.ndarray = np.nan_to_num(diff[max_pt + 10])
    npts: int = len(raw_curve)
    kernel: np.ndarray = np.zeros([npts])
    kernel[: npts // 2] = 1
    trace: np.ndarray = fftconvolve(raw_curve, kernel, mode="same")
    center: int = trace.argmax()
    fwhm: float = self._fit_convolution_fwhm(trace, bins)
    return raw_curve, trace, center, fwhm

_extract_az_int()

Try to extract the azimuthal integration data from HDF5 file.

This internal method will search first to see if a detector has been provided as the scattering detector. If not, it will attempt to guess which detector to use. It will attempt to extract both the internal integration data and PyFAI integrated data (which have different interfaces). If both are present, it will only extract the internal algorithm data.

Source code in lute/tasks/_smalldata.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def _extract_az_int(self) -> None:
    """Try to extract the azimuthal integration data from HDF5 file.

    This internal method will search first to see if a detector has been
    provided as the scattering detector. If not, it will attempt to guess
    which detector to use. It will attempt to extract both the internal
    integration data and PyFAI integrated data (which have different
    interfaces). If both are present, it will only extract the internal
    algorithm data.
    """
    detname: str = self._xss_detname
    try:
        self._extract_az_int_smd_internal(detname)
        logger.debug(
            f"Extracted internal azimuthal integration data for {detname}."
        )
    except Exception:
        try:
            self._extract_az_int_pyfai(detname)
            logger.debug(
                f"Extracted PyFAI azimuthal integration data for {detname}."
            )
        except Exception:
            logger.error("No azimuthal integration data found.")
            self._mpi_comm.Barrier()
            sys.exit(-1)

_extract_az_int_pyfai(detname)

Extract stored data from PyFAI's azimuthal integration algorithm.

Parameters:

Name Type Description Default
detname str

The detector name to extract data for.

required
Source code in lute/tasks/_smalldata.py
208
209
210
211
212
213
214
215
216
217
218
219
def _extract_az_int_pyfai(self, detname: str) -> None:
    """Extract stored data from PyFAI's azimuthal integration algorithm.

    Args:
        detname (str): The detector name to extract data for.
    """

    self._az_int = self._smd_h5[f"{detname}/pyfai_azav"][
        self._start_idx : self._stop_idx
    ]  # 3D
    self._q_vals = self._smd_h5[f"{detname}/pyfai_q"][()][0]
    self._phi_vals = self._smd_h5[f"{detname}/pyfai_az"][()][0]

_extract_az_int_smd_internal(detname)

Extract stored data from SmallData's azimuthal integration algorithm.

Parameters:

Name Type Description Default
detname str

The detector name to extract data for.

required
Source code in lute/tasks/_smalldata.py
195
196
197
198
199
200
201
202
203
204
205
206
def _extract_az_int_smd_internal(self, detname: str) -> None:
    """Extract stored data from SmallData's azimuthal integration algorithm.

    Args:
        detname (str): The detector name to extract data for.
    """

    self._az_int = self._smd_h5[f"{detname}/azav_azav"][
        self._start_idx : self._stop_idx
    ]  # 3D
    self._q_vals = self._smd_h5[f"UserDataCfg/{detname}/azav__azav_q"][()]
    self._phi_vals = self._smd_h5[f"UserDataCfg/{detname}/azav__azav_phiVec"][()]

_extract_standard_data()

Setup up stored attributes by taking data from the smalldata hdf5 file.

Source code in lute/tasks/_smalldata.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def _extract_standard_data(self) -> None:
    """Setup up stored attributes by taking data from the smalldata hdf5 file."""

    self._extract_az_int()
    try:
        self._xray_intensity = self._smd_h5[self._task_parameters.ipm_var][
            self._start_idx : self._stop_idx
        ]
    except KeyError as e:
        logger.error("ipm data not found! Check config!")
    self._integrated_intensity = np.nansum(self._az_int, axis=(1, 2))
    self._setup_std_filters()

    if isinstance(self._task_parameters.scan_var, str):
        scan_var: str = self._task_parameters.scan_var
        try:
            self._scan_values = self._smd_h5[f"scan/{scan_var}"][
                self._start_idx : self._stop_idx
            ]
            self._scan_var_name = scan_var
        except KeyError as e:
            logger.error(f"Scan variable {scan_var} not found!")
    elif isinstance(self._task_parameters.scan_var, list):
        for scan_var in self._task_parameters.scan_var:
            try:
                self._scan_values = self._smd_h5[f"scan/{scan_var}"][
                    self._start_idx : self._stop_idx
                ]
                self._scan_var_name = scan_var
                break
            except KeyError as e:
                logger.debug(f"Scan variable {scan_var} not found!")
                continue
    if not hasattr(self, "_scan_values"):
        # Create a set of scan values if none of the above scan
        # variables are found, either lxt_fast or linear set.
        try:
            self._scan_values = self._smd_h5["enc/lasDelay"][
                self._start_idx : self._stop_idx
            ]
            self._scan_var_name = "lxt_fast"
            logger.debug("Using scan variable lxt_fast")
        except KeyError as e:
            logger.debug("Scan variable lxt_fast not found!")
            self._scan_values = np.linspace(
                self._start_idx, self._stop_idx, self._num_events
            )
            logger.debug(
                "No scans found, using linearly spaced data for _scan_values."
            )

_extract_xas(detname)

Extract XAS specific data.

Extracts the integrated sum of an ROI as well as an CCM position data. Will search for both the readback value PV and, if present, the setpoint PV.

Parameters:

Name Type Description Default
detname str

The detector name to extract data for.

required
Source code in lute/tasks/_smalldata.py
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def _extract_xas(self, detname: str) -> None:
    """Extract XAS specific data.

    Extracts the integrated sum of an ROI as well as an CCM position data.
    Will search for both the readback value PV and, if present, the setpoint
    PV.

    Args:
        detname (str): The detector name to extract data for.
    """
    self._xas_raw = self._smd_h5[f"{detname}/ROI_0_sum"][
        self._start_idx : self._stop_idx
    ]
    self._ccm_E = self._smd_h5[self._task_parameters.ccm][
        self._start_idx : self._stop_idx
    ]
    if self._task_parameters.ccm_set is not None:
        try:
            self._ccm_E_set_pt = self._smd_h5[self._task_parameters.ccm_set][
                self._start_idx : self._stop_idx
            ]
        except KeyError:
            logger.error("No ccm_E_setpoint data. Will use fallback binning.")
    self._element: Optional[str] = self._task_parameters.element

_extract_xes(detname)

Extract XAS specific data.

Extracts individual ROIs and applys projections to extract the XES spectra. Depending on input TaskParameters, it will optionally rotate each ROI by some degrees prior to projection.

By default, this method will read all ROIs into memory simultaneously and then project them. Alternatively, e.g. if encountering memory issues, input parameters can be changed to switch to reading in batches. Set the batch_size parameter to indicate the number of events to read into memory at once.

Parameters:

Name Type Description Default
detname str

The detector name to extract data for.

required
Source code in lute/tasks/_smalldata.py
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def _extract_xes(self, detname: str) -> None:
    """Extract XAS specific data.

    Extracts individual ROIs and applys projections to extract the XES
    spectra. Depending on input TaskParameters, it will optionally rotate
    each ROI by some degrees prior to projection.

    By default, this method will read all ROIs into memory simultaneously
    and then project them. Alternatively, e.g. if encountering memory issues,
    input parameters can be changed to switch to reading in batches. Set the
    `batch_size` parameter to indicate the number of events to read into memory
    at once.

    Args:
        detname (str): The detector name to extract data for.
    """
    # Lets assume they set up the ROI nicley?
    # By xcsl1004821
    # proj0 should be spatial distribution
    # proj1 should be XES (unless invert == True)
    spatial_axis: int
    spectral_axis: int
    if not self._task_parameters.invert_xes_axes:
        spatial_axis = 0
        spectral_axis = 1
    else:
        spatial_axis = 1
        spectral_axis = 0

    self._xes: np.ndarray[np.float64]
    if self._task_parameters.batch_size:
        # Read data in batches for OOM issues
        size: int = self._task_parameters.batch_size

        for start in range(self._start_idx, self._stop_idx, size):
            end: int
            if start + size > self._stop_idx:
                end = self._stop_idx
            else:
                end = start + size
            xes_roi = self._smd_h5[f"{detname}/ROI_0_area"][start:end]
            if start == self._start_idx:
                self._xes = np.zeros(
                    (self._num_events, xes_roi.shape[spatial_axis + 1])
                )
            if self._task_parameters.rot_angle is not None:
                from scipy.ndimage import rotate

                xes_roi = rotate(
                    xes_roi, angle=self._task_parameters.rot_angle, axes=(2, 1)
                )
            spatial_dist: np.ndarray[np.float64] = np.nansum(
                xes_roi, axis=(0, spatial_axis + 1)
            )
            guess_idx: int = np.argmax(spatial_dist)
            if not self._task_parameters.invert_xes_axes:
                self._xes[start:end] = np.nansum(
                    xes_roi[..., guess_idx - 5 : guess_idx + 5],
                    axis=spectral_axis + 1,
                )
            else:
                self._xes[start:end] = np.nansum(
                    xes_roi[:, guess_idx - 5 : guess_idx + 5, :],
                    axis=spectral_axis + 1,
                )
    else:
        xes_roi = self._smd_h5[f"{detname}/ROI_0_area"][
            self._start_idx : self._stop_idx
        ]
        if self._task_parameters.rot_angle is not None:
            from scipy.ndimage import rotate

            xes_roi = rotate(
                xes_roi, angle=self._task_parameters.rot_angle, axes=(2, 1)
            )

        spatial_dist: np.ndarray[np.float64] = np.nansum(
            xes_roi, axis=(0, spatial_axis + 1)
        )
        guess_idx: int = np.argmax(spatial_dist)
        if not self._task_parameters.invert_xes_axes:
            self._xes = np.nansum(
                xes_roi[..., guess_idx - 5 : guess_idx + 5], axis=spectral_axis + 1
            )
        else:
            self._xes = np.nansum(
                xes_roi[:, guess_idx - 5 : guess_idx + 5, :], axis=spectral_axis + 1
            )

_find_solvent_argmax(corrected_profile)

Find the index of the solvent ring maximum.

Currently just a hack around SciPy find_peaks.

Parameters:

Name Type Description Default
corrected_profile ndarray[float64]

1D normalized and dark mean corrected, laser on, scattering profile.

required

Returns:

Name Type Description
peak_idx int

The index where the solvent maximum is located.

Source code in lute/tasks/_smalldata.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
def _find_solvent_argmax(self, corrected_profile: np.ndarray) -> int:
    """Find the index of the solvent ring maximum.

    Currently just a hack around SciPy find_peaks.

    Args:
        corrected_profile (np.ndarray[np.float64]): 1D normalized and dark
            mean corrected, laser on, scattering profile.

    Returns:
        peak_idx (int): The index where the solvent maximum is located.
    """
    res: Tuple[np.ndarray[np.int64], Dict[str, np.ndarray[np.float64]]] = (
        find_peaks(corrected_profile, 1)
    )
    try:
        peak_indices: np.ndarray = res[0]
        peak_heights: np.ndarray = res[1]["peak_heights"]
    except KeyError as e:
        logger.debug("No peaks found")
        return np.argmax(corrected_profile)

    peak_idx: int = peak_indices[
        np.argmax(peak_heights)
    ]  # peak_indices[0]  # peak_indices[peak_select - 1]
    self._solvent_peak_idx = peak_idx
    return peak_idx

_fit_convolution_fwhm(trace, bins)

Calculate the FWHM of a convolution signal.

Parameters:

Name Type Description Default
trace ndarray[float64]

1D convolution trace.

required
bins ndarray[float64]

1D set of bins used.

required

Returns:

Name Type Description
fwhm float

Calculated FWHM.

Source code in lute/tasks/_smalldata.py
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def _fit_convolution_fwhm(
    self, trace: np.ndarray, bins: np.ndarray[np.float64]
) -> float:
    """Calculate the FWHM of a convolution signal.

    Args:
        trace (np.ndarray[np.float64]): 1D convolution trace.

        bins (np.ndarray[np.float64]): 1D set of bins used.

    Returns:
        fwhm (float): Calculated FWHM.
    """
    from scipy.interpolate import UnivariateSpline

    x = np.linspace(0, len(trace) - 1, len(trace))
    spline = UnivariateSpline(x, (trace - np.max(trace) / 2), s=0)
    roots = spline.roots()
    if len(roots) == 2:
        lb, rb = roots
        fwhm = rb - lb
    else:
        max_val: int = trace.max()
        min_val: int = trace.min()
        guess: List[Union[float, int]] = [0, 0, 0, 0]
        x0: Union[float, int]
        if max_val > np.abs(min_val):
            x0 = bins[trace.argmax()]
            guess[0] = max_val
        else:
            x0 = bins[trace.argmin()]
            guess[0] = min_val
        guess[1] = x0
        guess[2] = np.abs(bins[-1] - bins[0]) / 20
        guess[3] = np.min(trace)
        opt, res = curve_fit(
            gaussian, bins, np.nan_to_num(trace), p0=guess, maxfev=999999
        )
        fwhm = sigma_to_fwhm(opt[2])
    return fwhm

_fit_overlap(laser_on, bins, diff, guess=None)

Fit overlap based on scattering difference signal to a Gaussian.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on scattering profile.

required
bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

2D difference signal of shape (q_bins, scan_bins).

required
guess Optional[List[float]]

A list of initial parameter guesses for Gaussian fit in the order (amplitude, x0, sigma, background offset)

None

Returns:

Name Type Description
raw_curve ndarray[float64]

1D difference slice at a specific Q value used for calculating the overlap.

opt ndarray[float64]

Optimized parameters.

res ndarray[float64]

Covariances.

Source code in lute/tasks/_smalldata.py
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
def _fit_overlap(
    self,
    laser_on: np.ndarray[np.float64],
    bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
    guess: Optional[List[float]] = None,
) -> Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]:
    """Fit overlap based on scattering difference signal to a Gaussian.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            scattering profile.

        bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 2D difference signal of shape
            (q_bins, scan_bins).

        guess (Optional[List[float]]): A list of initial parameter guesses
            for Gaussian fit in the order (amplitude, x0, sigma, background
            offset)

    Returns:
        raw_curve (np.ndarray[np.float64]): 1D difference slice at a specific
            Q value used for calculating the overlap.

        opt (np.ndarray[np.float64]): Optimized parameters.

        res (np.ndarray[np.float64]): Covariances.
    """
    Tuple[np.ndarray[np.float64], np.ndarray[np.float64], np.ndarray[np.float64]]
    max_pt: int = self._find_solvent_argmax(laser_on)
    try:
        idx_peak_q: int = max_pt + 10
    except IndexError as e:
        logger.debug(f"{e}: No non-nan values found.")
        idx_peak_q: int = 15

    raw_curve: np.ndarray = diff[idx_peak_q]
    if not guess:
        max_val: int = raw_curve.max()
        min_val: int = raw_curve.min()
        # guess = [amplitude, center, stddev, bkgnd]
        guess = [0, 0, 0, 0]
        x0: float
        if max_val > np.abs(min_val):
            x0 = bins[raw_curve.argmax()]
            guess[0] = max_val
        else:
            x0 = bins[raw_curve.argmin()]
            guess[0] = min_val
        guess[1] = x0
        guess[2] = np.abs(bins[-1] - bins[0]) / 20
        guess[3] = np.min(raw_curve)
    try:
        opt, res = curve_fit(gaussian, bins, raw_curve, p0=guess, maxfev=999999)
    except ValueError as e:
        logger.debug(f"{e}:\n No non-nan values...")
        opt = guess
        res = None

    return raw_curve, opt, res

_setup_std_filters()

Setup the individual standard event filters.

Sets up light status (X-ray and laser) filters, and adjustable filters based on, e.g., thresholds.

Source code in lute/tasks/_smalldata.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def _setup_std_filters(self) -> None:
    """Setup the individual standard event filters.

    Sets up light status (X-ray and laser) filters, and adjustable filters
    based on, e.g., thresholds.
    """
    # For filtering based on event type
    self._filter_dict["xray on"] = (
        self._smd_h5["lightStatus/xray"][self._start_idx : self._stop_idx] == 1
    )
    self._filter_dict["laser on"] = (
        self._smd_h5["lightStatus/laser"][self._start_idx : self._stop_idx] == 1
    )

    self._filter_dict["xray off"] = (
        self._smd_h5["lightStatus/xray"][self._start_idx : self._stop_idx] == 0
    )
    self._filter_dict["laser off"] = (
        self._smd_h5["lightStatus/laser"][self._start_idx : self._stop_idx] == 0
    )

    # Create scattering and ipm thresholds for first time
    self._update_filters()

_update_filters()

Update stored event filters that are based on adjustable parameters.

E.g. update the minimum scattering intensity to use in analyses.

Source code in lute/tasks/_smalldata.py
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def _update_filters(self) -> None:
    """Update stored event filters that are based on adjustable parameters.

    E.g. update the minimum scattering intensity to use in analyses.
    """
    scattering_thresh: float = self._task_parameters.thresholds.min_Iscat
    ipm_thresh: float = self._task_parameters.thresholds.min_ipm
    self._filter_dict["total scattering"] = (
        self._integrated_intensity > scattering_thresh
    )
    if hasattr(self, "_xray_intensity"):
        self._filter_dict["ipm"] = self._xray_intensity > ipm_thresh
    else:
        self._filter_dict["ipm"] = np.ones([self._num_events], dtype=bool)

plot_all_xas(laser_on, laser_off, ccm_bins, diff)

Plot XAS and optionally EXAFS

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on absorption spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off absorption spectrum.

required
ccm_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference absorption.

required

Returns:

Name Type Description
plot Tabs

All plots in separated tabs in a pn.Tabs object.

Source code in lute/tasks/_smalldata.py
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
def plot_all_xas(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    ccm_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Plot XAS and optionally EXAFS

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            absorption spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            absorption spectrum.

        ccm_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference absorption.

    Returns:
        plot (pn.Tabs): All plots in separated tabs in a pn.Tabs object.
    """
    std_xas_grid: pn.GridSpec = self.plot_std_xas_hv(
        laser_on, laser_off, ccm_bins, diff
    )
    tabs: pn.Tabs = pn.Tabs(std_xas_grid)
    if (
        hasattr(self._task_parameters, "analyze_exafs")
        and self._task_parameters.analyze_exafs
    ):
        ...
        # exafs_grid: pn.GridSpec = self.plot_exafs_hv()
        # tabs.append(exafs_grid)

    return tabs

plot_all_xss(laser_on, bins, diff, scan_var_name)

Plot all relevant scattering plots.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on scattering profile.

required
bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

2D difference signal of shape (q_bins, scan_bins).

required
scan_var_name str

Name of the scan variable (for titles, etc.).

required

Returns:

Name Type Description
plot Tabs

All plots in separated tabs in a pn.Tabs object.

Source code in lute/tasks/_smalldata.py
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def plot_all_xss(
    self,
    laser_on: np.ndarray[np.float64],
    bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
    scan_var_name: str,
) -> pn.Tabs:
    """Plot all relevant scattering plots.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            scattering profile.

        bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 2D difference signal of shape
            (q_bins, scan_bins).

        scan_var_name (str): Name of the scan variable (for titles, etc.).

    Returns:
        plot (pn.Tabs): All plots in separated tabs in a pn.Tabs object.
    """
    # avg_fig = self.plot_avg_xss()
    overlap_fig = self.plot_xss_overlap_fit(laser_on, bins, diff)

    # avg_grid = pn.GridSpec(name="TR X-ray Scattering")
    # avg_grid[:2, :2] = avg_fig

    diff_grid = self.plot_difference_xss_hv(bins, self._q_vals, diff, scan_var_name)
    overlap_grid = pn.GridSpec(name="Overlap Fit")
    overlap_grid[:2, :2] = overlap_fig

    tabbed_display = pn.Tabs(diff_grid)
    tabbed_display.append(overlap_grid)
    # tabbed_display.append(avg_grid)

    return tabbed_display

plot_difference_xss_hv(bins, q_vals, diff, scan_var_name)

Plot the binned difference scattering.

Parameters:

Name Type Description Default
bins ndarray[float64]

1D set of bins used for difference signal.

required
q_vals ndarray[float64]

1D set of Q bins.

required
diff ndarray[float64]

2D difference signal of shape (q_bins, scan_bins).

required
scan_var_name str

Name of the scan variable (for titles, etc.).

required

Returns:

Name Type Description
plot GridSpec

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
def plot_difference_xss_hv(
    self,
    bins: np.ndarray[np.float64],
    q_vals: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
    scan_var_name: str,
) -> pn.GridSpec:
    """Plot the binned difference scattering.

    Args:
        bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        q_vals (np.ndarray[np.float64]): 1D set of Q bins.

        diff (np.ndarray[np.float64]): 2D difference signal of shape
            (q_bins, scan_bins).

        scan_var_name (str): Name of the scan variable (for titles, etc.).

    Returns:
        plot (pn.GridSpec): Plotted binned difference.
    """
    grid: pn.GridSpec = pn.GridSpec(name="Difference Profiles")
    xdim: hv.core.dimension.Dimension = hv.Dimension(
        ("scan_var", f"Scan Var {scan_var_name}")
    )
    ydim: hv.core.dimension.Dimension = hv.Dimension(("Q", "Q"))
    diff_img: hv.Image = hv.Image(
        (bins, q_vals, diff),
        kdims=[xdim, ydim],
    ).opts(shared_axes=False)
    contours = diff_img + hv.operation.contours(diff_img, levels=5)
    contours.opts(
        hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
    ).opts(shared_axes=False)
    grid[:2, :2] = contours
    xdim: hv.core.dimension.Dimension = hv.Dimension(("Q", f"Q"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(("dS", "dS"))
    diff_curves: hv.Overlay
    diff_curves = hv.Curve((q_vals, diff[:, 0]))
    for i, _ in enumerate(bins):
        if i == 0:
            continue
        else:
            diff_curves *= hv.Curve(
                (
                    q_vals,
                    diff[:, i],
                )
            ).opts(xlabel=xdim.label, ylabel=ydim.label)

    grid[2:4, :] = diff_curves.opts(shared_axes=False)
    return grid

plot_std_xas_hv(laser_on, laser_off, ccm_bins, diff)

Plot relevant XAS plots.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on absorption spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off absorption spectrum.

required
ccm_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference absorption.

required

Returns:

Name Type Description
plot GridSpec

Laser on/off and difference XAS plots.

Source code in lute/tasks/_smalldata.py
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
def plot_std_xas_hv(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    ccm_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.GridSpec:
    """Plot relevant XAS plots.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            absorption spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            absorption spectrum.

        ccm_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference absorption.

    Returns:
        plot (pn.GridSpec): Laser on/off and difference XAS plots.
    """
    xdim: hv.core.dimension.Dimension = hv.Dimension(("ccm_E", "Energy"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(("A", "A"))

    on_pts: hv.Points = hv.Points(
        (ccm_bins, laser_on), kdims=[xdim, ydim], label="Laser on"
    ).opts(size=5, color="green")
    on_curve: hv.Curve = hv.Curve((ccm_bins, laser_on), kdims=[xdim, ydim]).opts(
        color="green"
    )
    off_pts: hv.Points = hv.Points(
        (ccm_bins, laser_off), kdims=[xdim, ydim], label="Laser off"
    ).opts(size=5, color="orange")
    off_curve: hv.Curve = hv.Curve((ccm_bins, laser_off), kdims=[xdim, ydim]).opts(
        color="orange"
    )
    xas_plots = on_pts * on_curve * off_pts * off_curve

    ydim = hv.Dimension(("diff A", "dA/dE"))

    diff_pts: hv.Points = hv.Points((ccm_bins, diff), kdims=[xdim, ydim]).opts(
        size=5
    )
    diff_curve: hv.Curve = hv.Curve((ccm_bins, diff), kdims=[xdim, ydim])
    diff_plot: hv.Overlay = hv.Overlay([diff_pts, diff_curve])

    grid: pn.GridSpec = pn.GridSpec(name="XAS")
    grid[:2, :2] = xas_plots
    grid[2:4, :2] = diff_plot
    return grid

plot_std_xes_hv(laser_on, laser_off, energy_bins, diff)

Plot XES and difference XES.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on emission spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off emission spectrum.

required
energy_bins Optional[ndarray[float64]]

1D set of bins used for the energy axis. If None, will just use pixels for that axis.

required
diff ndarray[float64]

1D difference emission.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
def plot_std_xes_hv(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    energy_bins: Optional[np.ndarray[np.float64]],
    diff: np.ndarray[np.float64],
) -> pn.GridSpec:
    """Plot XES and difference XES.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            emission spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            emission spectrum.

        energy_bins (Optional[np.ndarray[np.float64]]): 1D set of bins used
            for the energy axis. If None, will just use pixels for that axis.

        diff (np.ndarray[np.float64]): 1D difference emission.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    xdim: hv.core.dimension.Dimension = hv.Dimension(("Energy", "Energy"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(("I", "I"))

    bins: np.ndarray[Union[np.int64, np.float64]]
    if energy_bins is None:
        bins = np.arange(len(laser_on))
    else:
        # May be float, above is int
        bins = energy_bins

    on_pts: hv.Points = hv.Points(
        (bins, laser_on), kdims=[xdim, ydim], label="Laser on"
    ).opts(size=5, color="green")
    on_curve: hv.Curve = hv.Curve((bins, laser_on), kdims=[xdim, ydim]).opts(
        color="green"
    )
    off_pts: hv.Points = hv.Points(
        (bins, laser_off), kdims=[xdim, ydim], label="Laser off"
    ).opts(size=5, color="orange")
    off_curve: hv.Curve = hv.Curve((bins, laser_off), kdims=[xdim, ydim]).opts(
        color="orange"
    )
    xes_plots = on_pts * on_curve * off_pts * off_curve

    ydim = hv.Dimension(("diff I", "dI"))

    diff_pts: hv.Points = hv.Points((bins, diff), kdims=[xdim, ydim]).opts(size=5)
    diff_curve: hv.Curve = hv.Curve((bins, diff), kdims=[xdim, ydim])
    diff_plot: hv.Overlay = hv.Overlay([diff_pts, diff_curve])

    grid: pn.GridSpec = pn.GridSpec(name="XES")
    grid[:2, :2] = xes_plots
    grid[2:4, :2] = diff_plot
    return grid

plot_xas_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)

Produce a plot of an lxt_fast scan for time zero (or real signal).

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on absorption spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off absorption spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference absorption.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
def plot_xas_lxt_fast_scan(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Produce a plot of an lxt_fast scan for time zero (or real signal).

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            absorption spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            absorption spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference absorption.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt_fast", "lxt_fast"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(
        ("Normalized A", "Normalized A")
    )

    bin_centers: np.ndarray[np.float64] = (scan_bins[:-1] + scan_bins[1:]) / 2

    on_pts: hv.Points = hv.Points(
        (bin_centers, laser_on), kdims=[xdim, ydim], label="Laser on"
    ).opts(size=5, color="blue")
    on_curve: hv.Curve = hv.Curve((bin_centers, laser_on), kdims=[xdim, ydim]).opts(
        color="blue"
    )
    off_pts: hv.Points = hv.Points(
        (bin_centers, laser_off), kdims=[xdim, ydim], label="Laser off"
    ).opts(size=5, color="orange")
    off_curve: hv.Curve = hv.Curve(
        (bin_centers, laser_off), kdims=[xdim, ydim]
    ).opts(color="orange")
    xas_plots: hv.Overlay = on_pts * on_curve * off_pts * off_curve

    ydim = hv.Dimension(("diff A", "diff A"))
    diff_pts: hv.Points = hv.Points(
        (bin_centers, diff),
        kdims=[xdim, ydim],
        label="Laser on - Laser off",
    ).opts(size=5, color="green")
    diff_curve: hv.Curve = hv.Curve((bin_centers, diff), kdims=[xdim, ydim]).opts(
        color="green"
    )
    diff_plot: hv.Overlay = diff_pts * diff_curve

    grid: pn.GridSpec = pn.GridSpec(name="lxt_fast T0 scan")
    grid[:2, :2] = xas_plots.opts(axiswise=True, shared_axes=False)
    grid[:2, 2:4] = diff_plot.opts(axiswise=True, shared_axes=False)
    tabs: pn.Tabs = pn.Tabs(grid)
    return tabs

plot_xas_power_titration_scan(laser_on, laser_off, scan_bins, diff)

Produce a plot of the lxe_opa power titration.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on absorption spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off absorption spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference absorption.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
def plot_xas_power_titration_scan(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Produce a plot of the lxe_opa power titration.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            absorption spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            absorption spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference absorption.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    xdim: hv.core.dimension.Dimension = hv.Dimension(("lxe_opa", "lxe_opa"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(
        ("Normalized A", "Normalized A")
    )

    on_pts: hv.Points = hv.Points(
        (scan_bins, laser_on), kdims=[xdim, ydim], label="Laser on"
    ).opts(size=5, color="blue")
    on_curve: hv.Curve = hv.Curve((scan_bins, laser_on), kdims=[xdim, ydim]).opts(
        color="blue"
    )
    off_pts: hv.Points = hv.Points(
        (scan_bins, laser_off), kdims=[xdim, ydim], label="Laser off"
    ).opts(size=5, color="orange")
    off_curve: hv.Curve = hv.Curve((scan_bins, laser_off), kdims=[xdim, ydim]).opts(
        color="orange"
    )
    xas_plots: hv.Overlay = on_pts * on_curve * off_pts * off_curve

    ydim = hv.Dimension(("diff A", "diff A"))
    diff_pts: hv.Points = hv.Points(
        (scan_bins, diff),
        kdims=[xdim, ydim],
        label="Laser on - Laser off",
    ).opts(size=5, color="green")
    diff_curve: hv.Curve = hv.Curve((scan_bins, diff), kdims=[xdim, ydim]).opts(
        color="green"
    )
    diff_plot: hv.Overlay = diff_pts * diff_curve

    grid: pn.GridSpec = pn.GridSpec(name="Power Titration")
    grid[:2, :2] = xas_plots.opts(axiswise=True, shared_axes=False)
    grid[:2, 2:4] = diff_plot.opts(axiswise=True, shared_axes=False)
    tabs: pn.Tabs = pn.Tabs(grid)
    return tabs

plot_xas_scan_hv(laser_on, laser_off, scan_bins, diff)

Plot scan binned XAS data.

Currently handles lxe_opa power titration and t0 (lxt_fast) XAS scans.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on absorption spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off absorption spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference absorption.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
def plot_xas_scan_hv(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> Optional[pn.Tabs]:
    """Plot scan binned XAS data.

    Currently handles lxe_opa power titration and t0 (lxt_fast) XAS scans.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            absorption spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            absorption spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference absorption.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    if self._scan_var_name is None:
        logger.error("Skipping scan plots - requested scan variables not found.")
        return None
    if "lxe_opa" in self._scan_var_name:
        return self.plot_xas_power_titration_scan(
            laser_on, laser_off, scan_bins, diff
        )
    elif "lxt_fast" in self._scan_var_name:
        return self.plot_xas_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)

plot_xes_hv(laser_on, laser_off, energy_bins, diff)

Plot XES and difference XES. In the future will provide other plots.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on emission spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off emission spectrum.

required
energy_bins Optional[ndarray[float64]]

1D set of bins used for the energy axis. If None, will just use pixels for that axis.

required
diff ndarray[float64]

1D difference emission.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
def plot_xes_hv(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    energy_bins: Optional[np.ndarray[np.float64]],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Plot XES and difference XES. In the future will provide other plots.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            emission spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            emission spectrum.

        energy_bins (Optional[np.ndarray[np.float64]]): 1D set of bins used
            for the energy axis. If None, will just use pixels for that axis.

        diff (np.ndarray[np.float64]): 1D difference emission.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """

    std_xes_grid: pn.GridSpec = self.plot_std_xes_hv(
        laser_on, laser_off, energy_bins, diff
    )
    tabs: pn.Tabs = pn.Tabs(std_xes_grid)

    return tabs

plot_xes_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)

Plot lxt_fast scan binned XES data.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on emission spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off emission spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference emission.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
def plot_xes_lxt_fast_scan(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Plot lxt_fast scan binned XES data.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            emission spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            emission spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference emission.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    grid: pn.GridSpec = pn.GridSpec(name="Difference XES")
    xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt_fast", "lxt_fast"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(
        ("Energy (Pixel)", "Energy (Pixel)")
    )

    bin_centers: np.ndarray[np.float_] = (scan_bins[:1] + scan_bins[1:]) / 2
    diff_img: hv.Image = hv.Image(
        (
            bin_centers,
            np.linspace(0, len(laser_on[:, 0]) - 1, len(laser_on[:, 0])),
            diff,
        ),
        kdims=[xdim, ydim],
    ).opts(shared_axes=False)
    contours: hv.Contours = hv.operation.contours(diff_img, levels=5)
    contours.opts(
        hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
    )
    shared: hv.Overlay = diff_img + contours
    shared.opts(shared_axes=False)
    grid[:2, :2] = shared

    xdim: hv.core.dimension.Dimension = hv.Dimension(
        ("Energy (Pixel)", "Energy (Pixel)")
    )
    ydim: hv.core.dimension.Dimension = hv.Dimension(("dI", "dI"))

    diff_curves: hv.Curve = hv.Curve((range(len(diff[:, 0])), diff[:, 0]))
    for idx, _ in enumerate(bin_centers):
        if idx == 0:
            continue
        else:
            diff_curves *= hv.Curve((range(len(diff[:, 0])), diff[:, idx])).opts(
                xlabel=xdim.label, ylabel=ydim.label
            )
    grid[2:4, :] = diff_curves.opts(shared_axes=False)
    return pn.Tabs(grid)

plot_xes_lxt_scan(laser_on, laser_off, scan_bins, diff)

Plot lxt scan binned XES data.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on emission spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off emission spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference emission.

required

Returns:

Name Type Description
plot Tabs

Plotted binned difference.

Source code in lute/tasks/_smalldata.py
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
def plot_xes_lxt_scan(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> pn.Tabs:
    """Plot lxt scan binned XES data.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            emission spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            emission spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference emission.

    Returns:
        plot (pn.Tabs): Plotted binned difference.
    """
    grid: pn.GridSpec = pn.GridSpec(name="Difference XES")
    xdim: hv.core.dimension.Dimension = hv.Dimension(("lxt", "lxt"))
    ydim: hv.core.dimension.Dimension = hv.Dimension(
        ("Energy (Pixel)", "Energy (Pixel)")
    )

    diff_img: hv.Image = hv.Image(
        (
            scan_bins,
            np.linspace(0, len(laser_on[:, 0]) - 1, len(laser_on[:, 0])),
            diff,
        ),
        kdims=[xdim, ydim],
    ).opts(shared_axes=False)
    contours: hv.Contours = hv.operation.contours(diff_img, levels=5)
    contours.opts(
        hv.opts.Contours(cmap="fire", colorbar=True, tools=["hover"], width=325)
    )
    shared: hv.Overlay = diff_img + contours
    shared.opts(shared_axes=False)
    grid[:2, :2] = shared

    xdim: hv.core.dimension.Dimension = hv.Dimension(
        ("Energy (Pixel)", "Energy (Pixel)")
    )
    ydim: hv.core.dimension.Dimension = hv.Dimension(("dI", "dI"))

    diff_curves: hv.Curve = hv.Curve((range(len(diff[:, 0])), diff[:, 0]))
    for idx, _ in enumerate(scan_bins):
        if idx == 0:
            continue
        else:
            diff_curves *= hv.Curve((range(len(diff[:, 0])), diff[:, idx])).opts(
                xlabel=xdim.label, ylabel=ydim.label
            )
    grid[2:4, :] = diff_curves.opts(shared_axes=False)
    return pn.Tabs(grid)

plot_xes_scan_hv(laser_on, laser_off, scan_bins, diff)

Plot scan binned XES data.

Currently handles lxt and lxt_fast XES scans.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on emission spectrum.

required
laser_off ndarray[float64]

1D corrected average laser off emission spectrum.

required
scan_bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

1D difference emission.

required

Returns:

Name Type Description
plot Optional[Tabs]

Plotted binned difference. Returns None if the scan variable is unknown/unrecognized.

Source code in lute/tasks/_smalldata.py
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
def plot_xes_scan_hv(
    self,
    laser_on: np.ndarray[np.float64],
    laser_off: np.ndarray[np.float64],
    scan_bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> Optional[pn.Tabs]:
    """Plot scan binned XES data.

    Currently handles lxt and lxt_fast XES scans.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            emission spectrum.

        laser_off (np.ndarray[np.float64]): 1D corrected average laser off
            emission spectrum.

        scan_bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 1D difference emission.

    Returns:
        plot (Optional[pn.Tabs]): Plotted binned difference. Returns None if
            the scan variable is unknown/unrecognized.
    """
    if self._scan_var_name is None:
        logger.info("Skipping scan plots - requested scan variables not found.")
        return None
    if "lxt_fast" in self._scan_var_name:
        return self.plot_xes_lxt_fast_scan(laser_on, laser_off, scan_bins, diff)
    elif "lxt" in self._scan_var_name:
        return self.plot_xes_lxt_scan(laser_on, laser_off, scan_bins, diff)

plot_xss_overlap_fit(laser_on, bins, diff)

Plot the overlap fit to a slice of the binned difference.

Parameters:

Name Type Description Default
laser_on ndarray[float64]

1D corrected average laser on scattering profile.

required
bins ndarray[float64]

1D set of bins used for difference signal.

required
diff ndarray[float64]

2D difference signal of shape (q_bins, scan_bins).

required

Returns:

Name Type Description
plot Figure

Plotted overlap fit.

Source code in lute/tasks/_smalldata.py
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
def plot_xss_overlap_fit(
    self,
    laser_on: np.ndarray[np.float64],
    bins: np.ndarray[np.float64],
    diff: np.ndarray[np.float64],
) -> plt.Figure:
    """Plot the overlap fit to a slice of the binned difference.

    Args:
        laser_on (np.ndarray[np.float64]): 1D corrected average laser on
            scattering profile.

        bins (np.ndarray[np.float64]): 1D set of bins used for difference
            signal.

        diff (np.ndarray[np.float64]): 2D difference signal of shape
            (q_bins, scan_bins).

    Returns:
        plot (plt.Figure): Plotted overlap fit.
    """
    fig, ax = plt.subplots(1, 1, figsize=(6, 3), dpi=200)
    if self._scan_var_name is not None and "lxt" in self._scan_var_name:
        raw_curve: np.ndarray[np.float64]
        trace: np.ndarray[np.float64]
        center: int
        fwhm: float
        raw_curve, trace, center, fwhm = self._convolution_fit(laser_on, bins, diff)
        msg: str = (
            f"Scan Var: {self._scan_var_name}\n"
            f"Overlap Position: {bins[center]}\n"
            f"FWHM: {fwhm}"
        )
        logger.info(msg)
        ax.plot(bins, raw_curve, label="Raw")
        ax2 = ax.twinx()
        ax2.plot(bins, trace, color="orange", label="Convolution")
        ax.set_title(msg)
        ax.set_xlabel(f"Scan Variable ({self._scan_var_name})")
        ax.set_ylabel(r"$\Delta$S")
        plt.legend(loc=0, frameon=False)
    else:
        raw_curve: np.ndarray[np.float64]
        opt: np.ndarray[np.float64]
        raw_curve, opt, _ = self._fit_overlap(laser_on, bins, diff)
        msg: str = (
            f"Scan Var: {self._scan_var_name}\n"
            f"Overlap Position: {opt[1]}\n"
            f"FWHM: {sigma_to_fwhm(opt[2])}"
        )
        logger.info(msg)
        ax.plot(bins, raw_curve)
        ax.plot(bins, gaussian(bins, *opt))
        ax.set_title(msg)
        ax.set_xlabel(f"Scan Variable ({self._scan_var_name})")
        ax.set_ylabel(r"$\Delta$S")
    fig.tight_layout()
    return fig