Skip to content

_sqlite

Backend SQLite database utilites.

Functions should be used only by the higher-level database module.

This contains the implementation for the v0.2 database specification.

_add_env_vars(con, env_vars, execution_id)

Add all environment variables into the environment table for execution_id.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
env_vars Dict[str, str]

Dictionary of environment variable/value pairs.

required
execution_id int

The row id in the executions table associated to this set of parameters.

required
Source code in lute/io/_db/v2/_sqlite.py
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
def _add_env_vars(
    con: sqlite3.Connection, env_vars: Dict[str, str], execution_id: int
) -> None:
    """Add all environment variables into the `environment` table for `execution_id`.

    Args:
        con (sqlite3.Connection): A connection to the database.

        env_vars (Dict[str, str]): Dictionary of environment variable/value pairs.

        execution_id (int): The row id in the `executions` table associated to this
            set of parameters.
    """
    selected_env_vars: Dict[str, str] = {
        key: env_vars[key]
        for key in env_vars
        if ("LUTE_" in key and "_TENV_" not in key) or "SLURM_" in key
    }
    for key in selected_env_vars:
        entries: Dict[str, Any] = {
            "execution_id": execution_id,
            "name": key,
            "value": selected_env_vars[key],
        }
        # We should allow redundant entries, so don't ignore.
        # If we get a constraint-based error, something has gone wrong.
        # We don't care about the returned id in this case.
        _insert_maybe_ignore_return_id(
            con=con, table="environment", entries=entries, ignore=False
        )

    return None

_add_parameters(con, params, execution_id)

Add all parameters into the parameters table for execution_id.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
params TaskParameters

The TaskParameters object used for the execution.

required
execution_id int

The row id in the executions table associated to this set of parameters.

required
Source code in lute/io/_db/v2/_sqlite.py
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def _add_parameters(
    con: sqlite3.Connection, params: TaskParameters, execution_id: int
) -> None:
    """Add all parameters into the `parameters` table for `execution_id`.

    Args:
        con (sqlite3.Connection): A connection to the database.

        params (TaskParameters): The TaskParameters object used for the execution.

        execution_id (int): The row id in the `executions` table associated to this
            set of parameters.
    """
    schema: Dict[str, Any] = params.schema()
    param_dict: Dict[str, Any] = params.dict()
    for param in param_dict:
        try:
            props: Dict[str, Any] = schema["properties"][param]
        except KeyError:
            # It may not be defined at top level if nested
            for _, defn in schema["definitions"].items():
                if param in defn["properties"]:
                    props = defn["properties"][param]
                    break
            else:
                logger.critical(
                    f"Unable to parse parameter {param} properly! Metadata will be incorrect!"
                )
                props = {}
        param_meta_entries: Dict[str, Any] = {
            key: props[key] if key in props else None
            for key in LUTE_PARAMETER_FIELD_ATTRS
        }
        param_meta_id: int = _insert_maybe_ignore_return_id(
            con=con, table="param_meta", entries=param_meta_entries, ignore=True
        )
        raw_val: Any = param_dict[param]
        json_val: str
        if isinstance(raw_val, TemplateParameters):
            json_val = json.dumps(raw_val.params)
        else:
            json_val = json.dumps(raw_val)
        param_entries: Dict[str, Any] = {
            "execution_id": execution_id,
            "meta_id": param_meta_id,
            "name": param,
            "value": json_val,
        }
        # We should allow redundant entries, so don't ignore.
        # If we get a constraint-based error, something has gone wrong.
        # We don't care about the id in this case.
        _insert_maybe_ignore_return_id(
            con=con, table="parameters", entries=param_entries, ignore=False
        )

    return None

_create_base_schema_table(con)

Setup the base_schema table.

The base_schema table holds information about the atomic schema that can be implemented as impl_schema by a Task. The total schema may be a combination of various entries in this table.

This table contains constraints: - The name (and id) must be unique. - The id entry must be a power of 2 as the schema table uses a bitwise OR to indicate implementation of multiple base_schema.

This function will also insert all the base_schema already defined in lute.tasks.dataclasses.BaseSchema.

Note: Because the id must be a power of two, it must be inserted manually.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def _create_base_schema_table(con: sqlite3.Connection) -> None:
    """Setup the `base_schema` table.

    The `base_schema` table holds information about the atomic schema that can
    be implemented as `impl_schema` by a `Task`. The total `schema` may be a
    combination of various entries in this table.

    This table contains constraints:
    - The name (and id) must be unique.
    - The `id` entry must be a power of 2 as the `schema` table uses a bitwise
      OR to indicate implementation of multiple `base_schema`.

    This function will also insert all the base_schema already defined in
    `lute.tasks.dataclasses.BaseSchema`.

    Note: Because the `id` must be a power of two, it must be inserted manually.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    create_query: str = """
    CREATE TABLE IF NOT EXISTS base_schema (
        id INTEGER PRIMARY KEY,
        name TEXT UNIQUE,
        CHECK (id == 0 OR (id > 0 AND (id & (id - 1)) = 0))
    );
    """

    # In addition to creation, we will add base_schema that we already know about
    insert_query: str = "INSERT OR IGNORE INTO base_schema (id, name) VALUES (?, ?)"

    with con:
        con.executescript(PRAGMAS)
        con.execute(create_query)

        for bs in BaseSchema:
            con.execute(insert_query, (bs.value, bs.name))

_create_communicators_table(con)

Setup the communicators table.

The communicators table holds information about the possible types of Communicators that may be used by Executors (and Tasks) for IPC.

This table contains constraints: - The (name, description) combination must be unique. The name is allowed to be duplicate, because the same Communicator may have slightly different implementations which are reflected in the description column. - The id entry must be a power of 2 as the schema table uses a bitwise OR to indicate implementation of multiple base_schema.

Note: Because the id must be a power of two, it must be inserted manually.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def _create_communicators_table(con: sqlite3.Connection) -> None:
    """Setup the `communicators` table.

    The `communicators` table holds information about the possible types of
    `Communicator`s that may be used by `Executors` (and `Task`s) for IPC.

    This table contains constraints:
    - The (name, description) combination must be unique. The name is allowed to
      be duplicate, because the same Communicator may have slightly different
      implementations which are reflected in the description column.
    - The `id` entry must be a power of 2 as the `schema` table uses a bitwise
      OR to indicate implementation of multiple `base_schema`.

    Note: Because the `id` must be a power of two, it must be inserted manually.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    # id is a power of two
    query: str = """
    CREATE TABLE IF NOT EXISTS communicators (
        id integer PRIMARY KEY,
        name TEXT,
        description TEXT,
        CHECK (id == 0 OR (id > 0 AND (id & (id - 1)) = 0)),
        UNIQUE(name, description)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_config_table(con)

Setup the config table.

The config table holds information from the AnalysisHeader which is often shared between many executions of many Tasks.

This table contains constraints: - The combination of all columns (title, experiment, run, date, lute_version, task_timeout) must be unique. Multiple executions can reference the same row of this table.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def _create_config_table(con: sqlite3.Connection) -> None:
    """Setup the `config` table.

    The `config` table holds information from the AnalysisHeader which is often
    shared between many executions of many `Task`s.

    This table contains constraints:
    - The combination of all columns
      (title, experiment, run, date, lute_version, task_timeout) must be unique.
      Multiple executions can reference the same row of this table.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS config (
        id integer PRIMARY KEY,
        title TEXT,
        experiment TEXT,
        run TEXT,
        date TEXT,
        lute_version TEXT,
        task_timeout real,
        UNIQUE(title, experiment, run, date, lute_version, task_timeout)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_environment_table(con)

Setup the environment table.

The environment table holds the environment variable/value pairs associated to an execution. Each environment variable is entered into this table.

This table DOES NOT contain constraints and breaks full normalization by allowing redundant entries.

A unique index is setup using (execution_id, name) in the function _setup_triggers_and_indices.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def _create_environment_table(con: sqlite3.Connection) -> None:
    """Setup the `environment` table.

    The `environment` table holds the environment variable/value pairs associated
    to an execution. Each environment variable is entered into this table.

    This table DOES NOT contain constraints and breaks full normalization by allowing
    redundant entries.

    A unique index is setup using (execution_id, name) in the function
    `_setup_triggers_and_indices`.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS environment (
        id integer PRIMARY KEY,
        execution_id INTEGER,
        name TEXT,
        value TEXT,
        FOREIGN KEY (execution_id) REFERENCES executions (id)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_executions_table(con)

Setup the executions table.

The executions table holds pointers to all tables to describe the execution each time a Task is run. A new row is added each time LUTE is run.

This table DOES NOT contain constraints and breaks full normalization by allowing redundant entries.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def _create_executions_table(con: sqlite3.Connection) -> None:
    """Setup the `executions` table.

    The `executions` table holds pointers to all tables to describe the execution
    each time a `Task` is run. A new row is added each time LUTE is run.

    This table DOES NOT contain constraints and breaks full normalization by allowing
    redundant entries.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS executions (
        id integer PRIMARY KEY,
        task_id INTEGER,
        parameter_type_id INTEGER,
        executor_id INTEGER,
        config_id INTEGER,
        result_id INTEGER,
        timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
        FOREIGN KEY (task_id) REFERENCES tasks(id),
        FOREIGN KEY (parameter_type_id) REFERENCES parameter_types (id)
        FOREIGN KEY (executor_id) REFERENCES executors(id),
        FOREIGN KEY (config_id) REFERENCES config(id),
        FOREIGN KEY (result_id) REFERENCES results(id)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_executors_table(con)

Setup the executors table.

The executors table holds information about the Executors used for various executions.

This table contains constraints: - The combination of all columns (name, poll_interval, comm) must be unique. Multiple executions can reference the same row of this table. - The comm entry must be a BITWISE OR of the ids in the communicators table. This constraint is setup by the separate _setup_triggers_and_indices as TRIGGERs.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
def _create_executors_table(con: sqlite3.Connection) -> None:
    """Setup the `executors` table.

    The `executors` table holds information about the `Executor`s used for various
    executions.

    This table contains constraints:
    - The combination of all columns (name, poll_interval, comm) must be unique.
      Multiple executions can reference the same row of this table.
    - The `comm` entry must be a BITWISE OR of the ids in the `communicators`
      table. This constraint is setup by the separate `_setup_triggers_and_indices`
      as TRIGGERs.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS executors (
        id integer PRIMARY KEY,
        name TEXT,
        poll_interval INTEGER,
        comm INTEGER,
        UNIQUE(name, poll_interval, comm)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_param_meta_table(con)

Setup the param_meta table.

The param_meta table holds meta-data attributes for the Field definitions of various parameters (that in turn comprise a TaskParameters object). These allow reconstruction of run-time objects post-validation within LUTE without re-validating a config file, or even having access to pydantic.

This table contains constraints: - The combination of all columns (rename_param, flag_type, description, is_result) must be unique. Multiple parameters can reference the same row of this table.

The entries of this table may be NULL since parameters need not define

these attributes.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def _create_param_meta_table(con: sqlite3.Connection) -> None:
    """Setup the `param_meta` table.

    The `param_meta` table holds meta-data attributes for the Field definitions
    of various parameters (that in turn comprise a TaskParameters object). These
    allow reconstruction of run-time objects post-validation within LUTE without
    re-validating a config file, or even having access to pydantic.

    This table contains constraints:
    - The combination of all columns
      (rename_param, flag_type, description, is_result) must be unique.
      Multiple parameters can reference the same row of this table.

    Note: The entries of this table may be NULL since parameters need not define
          these attributes.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS param_meta (
        id integer PRIMARY KEY,
        rename_param TEXT NULL,
        description TEXT NULL,
        flag_type TEXT NULL,
        is_result INTEGER NULL,
        UNIQUE(rename_param, description, flag_type, is_result)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_parameter_types_table(con)

Setup the parameter_types table.

The parameter_types table holds the schema information of the TaskParameters object associated to a specific execution in the executions table.

This table contains constraints: - The definition column must be unique. The type_name column is allowed to be repeated to account for the possibility (although small) that a TaskParameters object is updated over the lifetime of the database. - The definition is required to be NOT NULL. All entries in the table must contain a definition.

Despite parameters themselves possibly having a complex type definitions,

they do not reference entries in this table. The overall TaskParameters object schema contains the definitions of all parameters, so the individual parameters do not need to also reference this table.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def _create_parameter_types_table(con: sqlite3.Connection) -> None:
    """Setup the `parameter_types` table.

    The `parameter_types` table holds the schema information of the TaskParameters
    object associated to a specific execution in the `executions` table.

    This table contains constraints:
    - The `definition` column must be unique. The `type_name` column is allowed to
      be repeated to account for the possibility (although small) that a TaskParameters
      object is updated over the lifetime of the database.
    - The `definition` is required to be NOT NULL. All entries in the table must
      contain a definition.

    Note: Despite parameters themselves possibly having a complex type definitions,
          they do not reference entries in this table. The overall TaskParameters
          object schema contains the definitions of all parameters, so the individual
          parameters do not need to also reference this table.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS parameter_types (
        id integer PRIMARY KEY,
        type_name TEXT,
        definition TEXT NOT NULL UNIQUE
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_parameters_table(con)

Setup the parameters table.

The parameters table holds parameter/value combinations. It also contains an execution_id which references the specific row in the executions table which the name/value pair corresponds to. Additional Field metadata attributes are stored in the param_meta table, the rows of which are referenced by the meta_id column.

This table DOES NOT contain constraints and breaks full normalization by allowing redundant entries.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def _create_parameters_table(con: sqlite3.Connection) -> None:
    """Setup the `parameters` table.

    The `parameters` table holds parameter/value combinations. It also contains
    an `execution_id` which references the specific row in the `executions` table
    which the name/value pair corresponds to. Additional Field metadata attributes
    are stored in the `param_meta` table, the rows of which are referenced by the
    `meta_id` column.

    This table DOES NOT contain constraints and breaks full normalization by allowing
    redundant entries.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS parameters (
        id integer PRIMARY KEY,
        execution_id INTEGER,
        meta_id INTEGER,
        name TEXT,
        value TEXT,
        FOREIGN KEY (execution_id) REFERENCES executions (id),
        FOREIGN KEY (meta_id) REFERENCES param_meta (id)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_results_table(con)

Setup the results table.

The results table holds information about the result of each execution.

This table contains constraints: - The combination of all columns (schema_id, payload, summary, status, valid_flag) must be unique. Multiple executions can reference the same row of this table.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
def _create_results_table(con: sqlite3.Connection) -> None:
    """Setup the `results` table.

    The `results` table holds information about the result of each execution.

    This table contains constraints:
    - The combination of all columns (schema_id, payload, summary, status, valid_flag)
      must be unique. Multiple executions can reference the same row of this table.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS results (
        id integer PRIMARY KEY,
        schema_id INTEGER,
        payload TEXT,
        summary TEXT,
        status INTEGER,
        valid_flag INTEGER,
        FOREIGN KEY (schema_id) REFERENCES schema (id),
        UNIQUE(schema_id, payload, summary, status, valid_flag)
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_schema_table(con)

Setup the schema table.

The schema table holds information about the impl_schemas that a Task may implement as part of its result.

This table contains constraints: - The schema column must be unique. Multiple executions may reference the same entry in this table. - The schema entry must be a BITWISE OR of the ids in the base_schema table. This constraint is setup by the separate _setup_triggers_and_indices as TRIGGERs.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def _create_schema_table(con: sqlite3.Connection) -> None:
    """Setup the `schema` table.

    The `schema` table holds information about the `impl_schemas` that a Task
    may implement as part of its result.

    This table contains constraints:
    - The `schema` column must be unique. Multiple executions may reference the
      same entry in this table.
    - The `schema` entry must be a BITWISE OR of the ids in the `base_schema`
      table. This constraint is setup by the separate `_setup_triggers_and_indices`
      as TRIGGERs.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS schema (
        id INTEGER PRIMARY KEY,
        schema INTEGER UNIQUE
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_create_tasks_table(con)

Setup the tasks table.

The tasks table holds the names of Tasks.

This table contains constraints: - The column name must be unique.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def _create_tasks_table(con: sqlite3.Connection) -> None:
    """Setup the `tasks` table.

    The `tasks` table holds the names of `Task`s.

    This table contains constraints:
    - The column `name` must be unique.

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE TABLE IF NOT EXISTS tasks (
        id integer PRIMARY KEY,
        name TEXT UNIQUE
    );
    """
    with con:
        con.executescript(PRAGMAS)
        con.execute(query)

_insert_maybe_ignore_return_id(con, table, entries, ignore=False)

Insert entries into a table.

This function will try to insert a new row into the requested table. It may ignore (depending on the value of the ignore argument) errors due to table constraints.

After insertion (or silent failure if ignore == True), the function will then query to find the id matching the newly inserted row, or the pre-existing row that matches the entries provided.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
table str

The database table to insert into.

required
entries dict[str, Any]

A dictionary consisting of COLUMN_NAME: VALUE key/value pairs to be inserted into table.

required
ignore bool

If True, ignore errors arising from database constraints. Use this option if you frequently want to try to insert new rows into tables that have uniqueness constraints which will result in failure.

False

Returns:

Name Type Description
id int

The id of the row matching entries. This will be either newly inserted, or pre-existing.

Source code in lute/io/_db/v2/_sqlite.py
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def _insert_maybe_ignore_return_id(
    con: sqlite3.Connection, table: str, entries: Dict[str, Any], ignore: bool = False
) -> int:
    """Insert entries into a table.

    This function will try to insert a new row into the requested table. It may
    ignore (depending on the value of the `ignore` argument) errors due to table
    constraints.

    After insertion (or silent failure if `ignore == True`), the function will then
    query to find the `id` matching the newly inserted row, or the pre-existing
    row that matches the entries provided.

    Args:
        con (sqlite3.Connection): A connection to the database.

        table (str): The database table to insert into.

        entries (dict[str, Any]): A dictionary consisting of `COLUMN_NAME: VALUE`
            key/value pairs to be inserted into `table`.

        ignore (bool): If `True`, ignore errors arising from database constraints.
            Use this option if you frequently want to try to insert new rows into
            tables that have uniqueness constraints which will result in failure.

    Returns:
        id (int): The id of the row matching `entries`. This will be either newly
            inserted, or pre-existing.
    """
    keys = list(entries.keys())
    keys_clause: str = f'({",".join(keys)})'
    values_clause: str = f'({",".join(f":{key}" for key in keys)})'

    match_clause: str = " AND ".join(
        f'"{key}" = :{key}' if val is not None else f'"{key}" IS NULL'
        for key, val in entries.items()
    )
    insert_query: str
    if ignore:
        insert_query = (
            f'INSERT OR IGNORE INTO "{table}" {keys_clause} VALUES {values_clause}'
        )
    else:
        insert_query = f'INSERT INTO "{table}" {keys_clause} VALUES {values_clause}'

    select_query: str = (
        f'SELECT id FROM "{table}" WHERE {match_clause} ORDER BY id DESC LIMIT 1'
    )

    with con:
        con.executescript(PRAGMAS)
        # Insert or ignore
        con.execute(insert_query, entries)

        # Get the row
        cur: sqlite3.Cursor = con.execute(select_query, entries)
        row: Optional[Tuple[int]] = cur.fetchone()

        if row:
            if table == "executions":
                logger.debug(f"Selecting {table} row: {row[0]}")
            return row[0]
        else:
            raise DatabaseError(f"Failed to insert or find a row for {table}.")

_insert_pow2_id_return_id(con, table, entries)

Insert entries into a table with a power of 2 constraint on the id.

This function will see if the entries already exist in the table. If not it will calculate the next power of 2 id, and insert them.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
table str

The database table to insert into.

required
entries dict[str, Any]

A dictionary consisting of COLUMN_NAME: VALUE key/value pairs to be inserted into table.

required

Returns:

Name Type Description
id int

The id of the row matching entries. This will be either newly inserted, or pre-existing.

Source code in lute/io/_db/v2/_sqlite.py
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
def _insert_pow2_id_return_id(
    con: sqlite3.Connection, table: str, entries: Dict[str, Any]
) -> int:
    """Insert entries into a table with a power of 2 constraint on the id.

    This function will see if the entries already exist in the table. If not it
    will calculate the next power of 2 id, and insert them.

    Args:
        con (sqlite3.Connection): A connection to the database.

        table (str): The database table to insert into.

        entries (dict[str, Any]): A dictionary consisting of `COLUMN_NAME: VALUE`
            key/value pairs to be inserted into `table`.

    Returns:
        id (int): The id of the row matching `entries`. This will be either newly
            inserted, or pre-existing.
    """
    keys: List[str] = list(entries.keys())

    match_clause: str = " AND ".join(f'"{key}" = :{key}' for key in keys)
    select_query: str = f'SELECT id FROM "{table}" WHERE {match_clause}'

    select_max_id_query: str = f"SELECT MAX(id) FROM {table}"

    with con:
        con.executescript(PRAGMAS)
        # Try to get the row
        cur: sqlite3.Cursor = con.execute(select_query, entries)
        row: Optional[Tuple[int]] = cur.fetchone()
        if row:
            # Entry already exists, so just return it
            return row[0]
        else:
            # Otherwise, get last row_id and enter new row with next power of 2 id
            cur = con.execute(select_max_id_query)
            row = cur.fetchone()
            if row:
                max_id: Optional[int] = row[0]
                new_id: int
                if max_id is None:
                    # This is the very first entry
                    new_id = 1
                else:
                    new_id = max_id * 2
                keys = list(entries.keys())
                # Add id to keys/entries
                keys.append("id")
                entries["id"] = new_id
                # Reconstruct query
                keys_clause: str = f'({",".join(keys)})'
                values_clause: str = f'({",".join(f":{key}" for key in keys)})'
                insert_query: str = (
                    f'INSERT INTO "{table}" {keys_clause} VALUES {values_clause}'
                )
                con.execute(insert_query, entries)
                # Assuming successful, we don't need to query again since we specified id
                # Will throw error if there is some other issue
                return new_id
            else:
                raise DatabaseError(
                    f"Failed to insert or find a row (with ID = power of 2) for {table}."
                )

_setup_triggers_and_indices(con)

Setup the trigger constraints and unique indices.

This function sets up some additional triggers to implement constraints: - Enforcing that the executors.comm column is a BITWISE OR of the entries in the communicators.id column. - Enforcing that the schema.schema column is a BITWISE OR of the entries in the base_schema.id column.

It also sets up a unique index on the environment table: - index = (execution_id, name)

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def _setup_triggers_and_indices(con: sqlite3.Connection) -> None:
    """Setup the trigger constraints and unique indices.

    This function sets up some additional triggers to implement constraints:
    - Enforcing that the `executors.comm` column is a BITWISE OR of the entries
      in the `communicators.id` column.
    - Enforcing that the `schema.schema` column is a BITWISE OR of the entries
      in the `base_schema.id` column.

    It also sets up a unique index on the `environment` table:
    - index = (execution_id, name)

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    query: str = """
    CREATE UNIQUE INDEX environment_index_0 ON environment (execution_id, name);

    CREATE TRIGGER check_schema_update
    BEFORE UPDATE ON schema
    BEGIN
        SELECT
        CASE
            WHEN NEW.schema > (SELECT SUM(id) FROM base_schema)
            THEN RAISE(ABORT, 'schema value exceeds total base_schema sum')
        END;
    END;

    CREATE TRIGGER check_schema_insert
    BEFORE INSERT ON schema
    BEGIN
        SELECT
        CASE
            WHEN NEW.schema > (SELECT SUM(id) FROM base_schema)
            THEN RAISE(ABORT, 'schema value exceeds total base_schema sum')
        END;
    END;

    CREATE TRIGGER check_executors_update
    BEFORE UPDATE ON executors
    BEGIN
        SELECT
        CASE
            WHEN NEW.comm > (SELECT SUM(id) FROM communicators)
            THEN RAISE(ABORT, 'comm value exceeds total communicators sum')
        END;
    END;

    CREATE TRIGGER check_executors_insert
    BEFORE INSERT ON executors
    BEGIN
        SELECT
        CASE
            WHEN NEW.comm > (SELECT SUM(id) FROM communicators)
            THEN RAISE(ABORT, 'comm value exceeds total communicators sum')
        END;
    END;
    """
    with con:
        con.executescript(PRAGMAS)
        con.executescript(query)

add_execution(con, cfg)

Write an DescribedAnalysis object to the database.

This will unpack all the values from the object and distribute the entries across all the various tables.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
cfg DescribedAnalysis

The DescribedAnalysis completed by the Executor after Task completion.

required
Source code in lute/io/_db/v2/_sqlite.py
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
def add_execution(con: sqlite3.Connection, cfg: DescribedAnalysis) -> None:
    """Write an DescribedAnalysis object to the database.

    This will unpack all the values from the object and distribute the entries
    across all the various tables.

    Args:
        con (sqlite3.Connection): A connection to the database.

        cfg (DescribedAnalysis): The DescribedAnalysis completed by the Executor
            after Task completion.
    """
    if cfg.task_parameters is None:
        return
    entries: Dict[str, Any] = {}
    # Task
    entries["name"] = cfg.task_result.task_name
    task_id: int = _insert_maybe_ignore_return_id(
        con=con, table="tasks", entries=entries, ignore=True
    )
    del cfg.task_result.task_name
    entries.clear()

    # Need to do communicators
    full_comm_id: int = 0
    for comm in cfg.communicator_desc:
        # communicator_desc is a list[str]
        # each entry is in format: `name: description`
        name: str
        desc: str
        name, desc = comm.split(":")
        desc = desc[1:]  # Remove space
        # id is required, but it will be added to entries by the function being called
        # so we don't include it here.
        entries = {
            # "id": 123,
            "name": name,
            "description": desc,
        }
        full_comm_id += _insert_pow2_id_return_id(
            con=con, table="communicators", entries=entries
        )

    # Need to update to pass name
    entries = {
        "name": cfg.executor_name,
        "poll_interval": cfg.poll_interval,
        "comm": full_comm_id,
    }
    executor_id: int = _insert_maybe_ignore_return_id(
        con=con, table="executors", entries=entries, ignore=True
    )
    entries.clear()

    # Config
    lute_config: AnalysisHeader = cfg.task_parameters.lute_config
    del cfg.task_parameters.lute_config
    config_id: int = _insert_maybe_ignore_return_id(
        con=con, table="config", entries=lute_config.dict(), ignore=True
    )

    # Setup schema first
    # For now we assume all base_schema were inserted during creation -
    # see _create_base_schema_table
    # Can extend later to add new schema as needed. Here we just calculate
    # the appropriate bitwise OR to add to the actual `schema` table
    impl_schemas: Optional[str] = cfg.task_result.impl_schemas
    combined_schema_val: int = 0
    if impl_schemas is not None:
        for bs_str in impl_schemas.split(";"):
            if bs_str in BaseSchema.__members__:
                combined_schema_val += BaseSchema.__members__[bs_str].value

    entries["schema"] = combined_schema_val
    schema_id: int = _insert_maybe_ignore_return_id(
        con=con, table="schema", entries=entries, ignore=True
    )
    entries.clear()

    # Prepare flag to indicate whether the task entry is valid or not
    # By default we say it is assuming proper completion
    valid_flag: int = 1 if cfg.task_result.task_status == TaskStatus.COMPLETED else 0

    # Results
    task_result: TaskResult = cfg.task_result
    entries = {
        "schema_id": schema_id,
        "payload": task_result.payload,
        "summary": task_result.summary,
        "status": str(task_result.task_status),
        "valid_flag": valid_flag,
    }
    result_id: int = _insert_maybe_ignore_return_id(
        con=con, table="results", entries=entries, ignore=True
    )
    entries.clear()

    # Include the parameter type definition.
    ## Have sets in the schema so we will convert those with `default=list`
    entries = {
        "type_name": cfg.task_parameters.__class__.__name__,
        "definition": json.dumps(cfg.task_parameters.schema(), default=list),
    }
    parameter_type_id: int = _insert_maybe_ignore_return_id(
        con=con, table="parameter_types", entries=entries, ignore=True
    )
    entries.clear()

    entries = {
        "task_id": task_id,
        "parameter_type_id": parameter_type_id,
        "executor_id": executor_id,
        "config_id": config_id,
        "result_id": result_id,
    }
    execution_id: int = _insert_maybe_ignore_return_id(
        con=con, table="executions", entries=entries, ignore=False
    )

    # Add individual param/values and their param_meta
    # NOTE: `param_meta` is probably redundant at the moment, since this may all
    #       be included in the parameter_types.definition column.
    #       We will maintain the table in case it is needed however.
    _add_parameters(con=con, params=cfg.task_parameters, execution_id=execution_id)

    # Add all environment variable/values
    env: Dict[str, str] = cfg.task_env
    _add_env_vars(con=con, env_vars=env, execution_id=execution_id)
    del cfg.task_env

    return None

create_tables(con)

Setup the full database.

See individual table function calls for more information

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
Source code in lute/io/_db/v2/_sqlite.py
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
def create_tables(con: sqlite3.Connection) -> None:
    """Setup the full database.

    See individual table function calls for more information

    Args:
        con (sqlite3.Connection): A connection to the database.
    """
    if does_table_exist(con, "executions"):
        return None
    else:
        _create_tasks_table(con)
        _create_parameter_types_table(con)

        _create_communicators_table(con)
        _create_executors_table(con)
        _create_config_table(con)

        _create_base_schema_table(con)
        _create_schema_table(con)
        _create_results_table(con)

        _create_executions_table(con)

        _create_param_meta_table(con)
        _create_parameters_table(con)

        _create_environment_table(con)

        _setup_triggers_and_indices(con)

executions_summary(con)

Return some summary fields of all executions recorded.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required

Returns:

Name Type Description
rows List[Tuple[int, str, str, str, str, str, int]]

Returns a list of rows consisting of tuples with the following entries: ( executions.id, executions.timestamp, tasks.name, results.summary, results.payload, results.summary, results.valid_flag, ). An example of how to manipulate this data is in utilities/src/dbview.py

Source code in lute/io/_db/v2/_sqlite.py
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
def executions_summary(
    con: sqlite3.Connection,
) -> List[Tuple[int, str, str, str, str, str, int]]:
    """Return some summary fields of all executions recorded.

    Args:
        con (sqlite3.Connection): A connection to the database.

    Returns:
        rows (List[Tuple[int, str, str, str, str, str, int]]): Returns a list
            of rows consisting of tuples with the following entries:
            (
                executions.id,
                executions.timestamp,
                tasks.name,
                results.summary,
                results.payload,
                results.summary,
                results.valid_flag,
            ).
            An example of how to manipulate this data is in `utilities/src/dbview.py`
    """
    join_query: str = """
        SELECT e.id, e.timestamp, t.name, r.summary, r.payload, r.status, r.valid_flag
        FROM parameters p
        JOIN executions e ON p.execution_id = e.id
        JOIN config c ON e.config_id = c.id
        JOIN results r ON e.result_id = r.id
        JOIN tasks t ON e.task_id = t.id
        ORDER BY e.timestamp ASC
    """
    with con:
        cur: sqlite3.Cursor = con.execute(join_query)
        rows: List[Tuple[int, str, str, str, str, str, int]] = cur.fetchall()
        return rows

select_param_from_db(con, task_name, param_name, condition)

Retrieve a specific value for a parameter subject to conditions.

If multiple parameter/value pairs match the provided conditions, this function will return the latest entry.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
task_name str

The Task of interest.

required
param_name str

The parameter for that Task.

required
condition Dict[str, str]

A dictionary of conditions. Currently supports: - valid_flag: 1/0 # Only include "valid" results. - run: XYZ # Only look at entries from this run. Otherwise, take the latest.

required

Returns: value (Optional[Any]): The retrieved value from the parameters table or None if nothing is found (or potentially if the value is None). Values are stored serialized as json. This function deserializes and returns the Python object.

Source code in lute/io/_db/v2/_sqlite.py
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
def select_param_from_db(
    con: sqlite3.Connection, task_name: str, param_name: str, condition: Dict[str, str]
) -> Optional[Any]:
    """Retrieve a specific value for a parameter subject to conditions.

    If multiple parameter/value pairs match the provided conditions, this function
    will return the latest entry.

    Args:
        con (sqlite3.Connection): A connection to the database.

        task_name (str): The `Task` of interest.

        param_name (str): The parameter for that `Task`.

        condition (Dict[str, str]): A dictionary of conditions. Currently supports:
            - valid_flag: 1/0 # Only include "valid" results.
            - run: XYZ # Only look at entries from this run. Otherwise, take the latest.
    Returns:
        value (Optional[Any]): The retrieved value from the `parameters` table or
            None if nothing is found (or potentially if the value is None). Values
            are stored serialized as json. This function deserializes and returns
            the Python object.
    """

    condition["param"] = param_name
    condition["task"] = task_name
    where_clause: str = "WHERE "
    for key in condition:
        if where_clause != "WHERE ":
            where_clause = f"{where_clause} AND "
        if key == "valid_flag":
            where_clause = f"{where_clause} r.valid_flag = :valid_flag"
        elif key == "run":
            where_clause = f"{where_clause} c.run = :run"
        elif key == "param":
            where_clause = f"{where_clause} p.name = :param"
        elif key == "task":
            where_clause = f"{where_clause} t.name = :task"

    join_query: str = f"""
    SELECT p.value
    FROM parameters p
    JOIN executions e ON p.execution_id = e.id
    JOIN config c ON e.config_id = c.id
    JOIN results r ON e.result_id = r.id
    JOIN tasks t ON e.task_id = t.id
    {where_clause}
    ORDER BY e.timestamp DESC
    LIMIT 1
    """
    with con:
        con.executescript(PRAGMAS)

        cur: sqlite3.Cursor = con.execute(join_query, condition)
        row: Any = cur.fetchone()

        return json.loads(row[0]) if row else None

task_parameters_summary(con, task_name)

Return parameters for a specific task ordered by execution.

Parameters:

Name Type Description Default
con Connection

A connection to the database.

required
task_name str

Name of the Task to retrieve parameters for.

required

Returns:

Name Type Description
rows List[Tuple[int, str, str, str, str, str, int]]

Returns a list of rows consisting of tuples with the following entries: ( executions.id, executions.timestamp, results.valid_flag, parameters.name, parameters.value, ). An example of how to manipulate this data is in utilities/src/dbview.py

Source code in lute/io/_db/v2/_sqlite.py
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
def task_parameters_summary(
    con: sqlite3.Connection, task_name: str
) -> List[Tuple[int, str, int, str, str]]:
    """Return parameters for a specific task ordered by execution.

    Args:
        con (sqlite3.Connection): A connection to the database.

        task_name (str): Name of the Task to retrieve parameters for.

    Returns:
        rows (List[Tuple[int, str, str, str, str, str, int]]): Returns a list
            of rows consisting of tuples with the following entries:
            (
                executions.id,
                executions.timestamp,
                results.valid_flag,
                parameters.name,
                parameters.value,
            ).
            An example of how to manipulate this data is in `utilities/src/dbview.py`
    """
    join_query: str = """
        SELECT e.id, e.timestamp, r.valid_flag, p.name, p.value
        FROM parameters p
        JOIN executions e ON p.execution_id = e.id
        JOIN config c ON e.config_id = c.id
        JOIN results r ON e.result_id = r.id
        JOIN tasks t ON e.task_id = t.id
        WHERE t.name = ?
        ORDER BY e.timestamp ASC
    """
    with con:
        cur: sqlite3.Cursor = con.execute(join_query, (task_name,))
        rows: List[Tuple[int, str, int, str, str]] = cur.fetchall()
        return rows